Advertisement

Brief Survey on the CP Methods for the Schrödinger Equation

  • L. Gr. IxaruEmail author
Conference paper

Abstract

The CP methods have some salient advantages over other methods, viz.: (i) the accuracy is uniform with respect to the energy E; (ii) there is an easy control of the error; (iii) the step widths are unusually big and the computation is fast; (iv) the form of the algorithm allows a direct evaluation of collateral quantities such as normalisation constant, Prüfer phase, or the derivative of the solution with respect to E; (v) the algorithm is of a form which allows using parallel computation.

Keywords

Schrödinger equation CP methods ηm set of functions 

Mathematics Subject Classification (2000)

81Q05 

Notes

Acknowledgements

This work was partially supported under contract IDEI-119 (Romania).

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 8th edn. Dover, New York (1972) zbMATHGoogle Scholar
  2. 2.
    Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: Comput. Phys. Commun. 178, 732–744 (2008) zbMATHCrossRefGoogle Scholar
  3. 3.
    Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: J. Comput. Appl. Math. 223, 387–398 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Canosa, J., Gomes de Oliveira, R.: J. Comput. Phys. 5, 188–207 (1970) zbMATHCrossRefGoogle Scholar
  5. 5.
    Gordon, R.G.: J. Chem. Phys. 51, 14–25 (1969) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ixaru, L.Gr.: The algebraic approach to the scattering problem. Internal Report IC/69/7, International Centre for Theoretical Physics, Trieste (1969) Google Scholar
  7. 7.
    Ixaru, L.Gr.: An algebraic solution of the Schrödinger equation. Internal Report IC/69/6, International Centre for Theoretical Physics, Trieste (1969) Google Scholar
  8. 8.
    Ixaru, L.Gr.: J. Comput. Phys. 9, 159–163 (1972) zbMATHCrossRefGoogle Scholar
  9. 9.
    Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht/Boston/Lancaster (1984) zbMATHGoogle Scholar
  10. 10.
    Ixaru, L.Gr.: J. Comput. Appl. Math. 125, 347–357 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ixaru, L.Gr.: Comput. Phys. Commun. 147, 834–852 (2002) zbMATHCrossRefGoogle Scholar
  12. 12.
    Ixaru, L.Gr.: Comput. Phys. Commun. 177, 897–907 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ixaru, L.Gr., Rizea, M.: Comput. Phys. Commun. 19, 23–27 (1980) CrossRefGoogle Scholar
  14. 14.
    Ixaru, L.Gr., Rizea, M.: J. Comput. Phys. 73, 306–324 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ixaru, L.Gr., Rizea, M., Vertse, T.: Comput. Phys. Commun. 85, 217–230 (1995) zbMATHCrossRefGoogle Scholar
  16. 16.
    Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: J. Comput. Appl. Math. 88, 289 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: Comput. Phys. Commun. 118, 259 (1999) zbMATHCrossRefGoogle Scholar
  18. 18.
    Kalogiratou, Z., Monovasilis, Th., Simos, T.E.: Comput. Phys. Commun. 180, 167–176 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 162, 151–165 (2004) zbMATHCrossRefGoogle Scholar
  20. 20.
    Ledoux, V., Ixaru, L.Gr., Rizea, M., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 175, 424–439 (2006) zbMATHCrossRefGoogle Scholar
  21. 21.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 174, 357–370 (2006) zbMATHCrossRefGoogle Scholar
  22. 22.
    Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 180, 241–250 (2009) zbMATHCrossRefGoogle Scholar
  23. 23.
    NAG Fortran Library Manual: S17AGF, S17Astron. J.F, S17AHF, S17AKF, Mark 15, The Numerical Algorithms Group Limited, Oxford (1991) Google Scholar
  24. 24.
    Pruess, S.: SIAM J. Numer. Anal. 10, 55–68 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford University Press, Oxford (1993) zbMATHGoogle Scholar
  26. 26.
    Simos, T.E.: Comput. Phys. Commun. 178, 199–207 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Vanden Berghe, G., Van Daele, M.: J. Comput. Appl. Math. 200, 140–153 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Vanden Berghe, G., Van Daele, M.: Appl. Numer. Math. 59, 815–829 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Theoretical Physics“Horia Hulubei” National Institute of Physics and Nuclear EngineeringBucharestRomania
  2. 2.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations