Forecasting Equations in Complex-Quaternionic Setting

  • W. SprössigEmail author


We consider classes of fluid flow problems under given initial value and boundary value conditions on the sphere and on ball shells in ℝ3. Our attention is focused to the forecasting equations and the deduction of a suitable quaternionic operator calculus.


Forecasting equations Quaternionic operator calculus Toroidal flows 

Mathematics Subject Classification (2000)

30G35 35G15 


  1. 1.
    Blaschke, W.: Anwendung dualer Quaternionen auf Kinematik. Ann. Acad. Sci. Fennicae, Ser. A I, Math. 250/3 (1958) Google Scholar
  2. 2.
    Cerejeiras, P., Vieira, N.: Factorization of the Non-stationary Schrödinger Operator. Adv. Appl. Clifford Algebras 17, 331–341 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cerejeiras, P., Kähler, U., Sommen, F.: Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains. Math. Methods Appl. Sci. 28, 1715–1724 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cnops, J.: An Introduction of Dirac Operators on Manifolds. Birkhäuser, Basel (2002) CrossRefGoogle Scholar
  5. 5.
    Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor Valued Functions. Kluwer, Dordrecht (1992) zbMATHCrossRefGoogle Scholar
  6. 6.
    Duduchava, R.: Boundary value problems on a smooth surface with smooth boundary. Universität Stuttgart, Preprint 2002-5,1-19 (2002) Google Scholar
  7. 7.
    Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier-Stokes equation on the sphere. Shaker, D386 (2005) Google Scholar
  8. 8.
    Günter, N.: Potential Theory and Its Application to the Basic Problems of Mathematical Physics. Fizmatgiz, Moscow (1953). (Russian translation in Frenc Gauthier-Villars, Paris (1994)) Google Scholar
  9. 9.
    Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1989) zbMATHGoogle Scholar
  10. 10.
    Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physcists and Engineers. Mathematical Methods in Practice. Wiley, Chichester (1997) Google Scholar
  11. 11.
    Gürlebeck, K., Sprössig, W.: Representation theory for classes of initial value problems with quaternion analysis. Math. Methods Appl. Sci. 25, 1371–1382 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel (2007) Google Scholar
  13. 13.
    Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866). Reprinted by Chelsea, New York (1969) Google Scholar
  14. 14.
    Lesieur, M.: Turbulence in Fluids. Third Revised and Enlarged Edition. Kluwer, Boston (1997) zbMATHCrossRefGoogle Scholar
  15. 15.
    Majda, A.: Introduction to PDE’s and waves for atmosphere and ocean. New York, Courant-Lecture Notes, vol. 9 (2003) Google Scholar
  16. 16.
    Mitrea, M.: Boundary value problems for Dirac operators and Maxwell’s equations in non-smooth domains. Math. Methods Appl. Sci. 25, 1355–1369 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Moisil, G., Teodorescu, N.: Fonctions holomorphes dans l’espace. Mat. Cluj 5, 142–150 (1931) Google Scholar
  18. 18.
    Norburg, J., Roulstone, I.: Large-Scale Atmosphere-Ocean Dynamics I. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  19. 19.
    Prößdorf, S.: Einige Klassen singulärer Gleichungen. Birkhäuser, Basel (1974) Google Scholar
  20. 20.
    Schwarz, G.: Hodge Decompositions—A Method for Solving Boundary Value Problems. LMN, vol. 1607. Springer, Berlin (1995) Google Scholar
  21. 21.
    Sprössig, W.: Exponentials of the Dirac operator and an application (2009) Google Scholar
  22. 22.
    Sprössig, W., Le, T.H.: On a new notion of holomorphy and its applications. Cubo, Math. J. 11(1), 145–162 (2008) Google Scholar
  23. 23.
    Van Lancker, P.: Clifford analysis on the unit sphere. Thesis, University of Ghent (1997) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Fakultaet fuer Mathematik und InformatikTU Bergakademie FreibergFreibergGermany

Personalised recommendations