Skip to main content

Principles and Applications of Fluorescence Correlation Spectroscopy (FCS)

  • Conference paper
  • First Online:
Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation

Abstract

Fluorescence correlation spectroscopy (FCS) is one of the various modern optical techniques that allow access to single fluorescently labeled biomolecules in aqueous solution. In contrast to other fluorescence measurements, however, the parameter of primary interest is not the emission intensity itself, but rather spontaneous intensity fluctuations caused by the minute deviations of a small ensemble of molecules from thermal equilibrium. In general, all physical parameters that give rise to fluctuations in the fluorescence signal are accessible by FCS. It is, for example, rather straightforward to determine local concentrations, mobility coefficients or characteristic rate constants of inter- or intramolecular reactions of fluorescently labeled biomolecules at nanomolar to micromolar concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madge, et al., Phys. Rev. Lett. 29, 705 (1972)

    Google Scholar 

  2. Rigler, R and Mets, Ü., Proc. SPIE 1921, 239 (1993)

    Article  CAS  Google Scholar 

  3. Petersen, N.O. and Elson, E.L., Meth. Enzymol. 130, 454 (1986)

    Article  CAS  Google Scholar 

  4. Widengren, J. and Rigler, R.J., Fluoresc. 4, 255 (1994)

    Article  CAS  Google Scholar 

  5. Widengren, J. et al., J Phys. Chem. 99, 13368 (1995)

    Article  CAS  Google Scholar 

  6. Schwille, P.; et al., PNAS 97, 151 (2000)

    Article  CAS  Google Scholar 

  7. Widengren, J. and Rigler, R., J Fluoresc. 7, 211 (1997)

    Article  Google Scholar 

  8. Edman, L. et al., PNAS 93, 6710 (1996)

    Article  CAS  Google Scholar 

  9. Haupts, U.et al., PNAS 95, 13573 (1998)

    Google Scholar 

  10. Widengren, J. and Schwille, P., J. Phys. Chem. A (2000)

    Google Scholar 

  11. Schwille, P et al., Cytometry 36, 176 (1999)

    Article  CAS  Google Scholar 

  12. Wachsmuth, M. et al., J. Mol. Biol. 298, 677 (2000)

    Article  CAS  Google Scholar 

  13. Feder, T.J. et al., Biophys. J. 70, 2767 (1996)

    Article  CAS  Google Scholar 

  14. Gennerich, A. and Schild, D., Biophys. J. 79, 3294 (2000)

    Article  CAS  Google Scholar 

  15. Schwille, P. et al., Biophys. J. 72, 1878 (1997)

    Article  CAS  Google Scholar 

  16. Schwille P., Cell Biochem. Biophys. 34, 383 (2001)

    Article  CAS  Google Scholar 

  17. Kim, S. et al., PNAS 101, 105 (2004)

    Article  CAS  Google Scholar 

  18. Kim, S. et al., Biophys. J. 88, 4319 (2005)

    Article  CAS  Google Scholar 

  19. Denk,W. et al., Science 248, 73 (1990)

    Article  CAS  Google Scholar 

  20. Schwille, P. et al., Biophys. J. 77, 2251 (1999)

    Article  CAS  Google Scholar 

  21. Heinze, K.G. et al., PNAS 97, 10377 (2000)

    Article  CAS  Google Scholar 

  22. Enderlein, J. et al., Chem. Phys. Chem. 6, 2324 (2005)

    CAS  Google Scholar 

  23. Ries, J. and Schwille, P., PCCP 10, 3487 (2008)

    CAS  Google Scholar 

  24. Petrasek, Z. and Schwille, P., Biophys. J. 94, 1437 (2008)

    Article  CAS  Google Scholar 

  25. Petrasek, Z. et al., Methods Enzymol., in press (2010)

    Google Scholar 

  26. Ruan, Q.Q. et al., Biophys. J. 87, 1260 (2004)

    Article  CAS  Google Scholar 

  27. Petersen, N.O., Biophys. J. 49, 809 (1986)

    Article  CAS  Google Scholar 

  28. Petersen, N.O. et al., Biophys. J. 49, 817 (1986)

    Article  CAS  Google Scholar 

  29. Berland, K.M. et al., Biophys. J. 71, 410 (1996)

    Article  CAS  Google Scholar 

  30. Skinner, J.P. et al., Biophys. J. 89, 1288 (2005)

    Article  CAS  Google Scholar 

  31. Ries, J. and Schwille, P., Biophys. J. 91, 1915 (2006)

    Article  CAS  Google Scholar 

  32. Petrasek, Z. et al., Biophys. J. 95, 5476 (2008)

    Article  CAS  Google Scholar 

  33. Ries J. et al., Biophys. J. 96, 1999 (2009)

    Article  CAS  Google Scholar 

  34. Digman, M.A. et al., Biophys. J. 89, 1317 (2005)

    Article  CAS  Google Scholar 

  35. Dertinger, T. et al., Ultrasensitive and single-molecule detection technologies II, San Jose, California, USA, 6444, 64440H (2007)

    Google Scholar 

  36. Dertinger, T. et al., Chem. Phys. Chem. 8, 433 (2007)

    CAS  Google Scholar 

  37. Brinkmeier, M. et al., Anal. Chem. 71, 609 (1999)

    Article  CAS  Google Scholar 

  38. Klar, T.A. et al., PNAS 97, 8206 (2000)

    Article  CAS  Google Scholar 

  39. Kastrup, L. et al., Phys. Rev. Lett. 94, 178104 (2005)

    Article  CAS  Google Scholar 

  40. Rajendran, L. and Simons, K., J. Cell Sci. 118, 1099 (2005)

    Article  CAS  Google Scholar 

  41. Eggeling, C. et al., Nature 457, 1159 (2009)

    Article  CAS  Google Scholar 

  42. Lenne, P.F. et al., EMBO J. 25, 3245 (2006)

    Article  CAS  Google Scholar 

  43. Vobornik, D. et al., Appl. Phys. Lett. 93, 163904 (2008)

    Article  CAS  Google Scholar 

  44. Levene, M.J. et al., Science. 299, 682 (2003)

    Article  CAS  Google Scholar 

  45. Wenger, J. et al., Opt. Expr. 14, 12206 (2006)

    Article  CAS  Google Scholar 

  46. Wenger, J. et al., Biophys. J. 92, 913 (2007)

    Article  CAS  Google Scholar 

  47. Thompson, N.L. and Steele, B.L., Nat. Prot. 2, 1754 (2007)

    Article  CAS  Google Scholar 

  48. Ries, J. et al., Biophys. J. 95, 390 (2008)

    Article  CAS  Google Scholar 

  49. Thompson, N.L. and Axelrod, D., Biophys. J. 43, 103 (1983)

    Article  CAS  Google Scholar 

  50. Hassler, K., et al., Biophys. J. 88, L01 (2005)

    Article  CAS  Google Scholar 

  51. Ohsugi, Yu., et al., Biophys. J. 91, 3456 (2006)

    Article  CAS  Google Scholar 

  52. Ries, J. et al., Biophys. J. 94, 221 (2008)

    Article  CAS  Google Scholar 

  53. Kannan, B. et al., Anal. Chem. 79, 4463 (2007)

    Article  CAS  Google Scholar 

  54. Lieto, A.M. et al., Biophys J. 85, 3294 (2003)

    Article  CAS  Google Scholar 

  55. Hansen, R.L. and Harris, J.M., Anal. Chem. 70, 4247 (1998)

    Article  CAS  Google Scholar 

  56. Yu, S.R., et al. Nature 461, 533 (2009)

    Article  CAS  Google Scholar 

  57. Ries, J., et al., Nat. Methods 6, 643 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Schwille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Schwille, P., Ries, J. (2011). Principles and Applications of Fluorescence Correlation Spectroscopy (FCS). In: Bartolo, B., Collins, J. (eds) Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9977-8_4

Download citation

Publish with us

Policies and ethics