Skip to main content

Photons and Photon Correlation Spectroscopy

  • Conference paper
  • First Online:
Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation

Abstract

The majority of optical phenomena and even most of photonics can be well understood on the basis of Classical Electrodynamics. The Maxwell-Theory is perfectly adequate for understanding diffraction, interference, image formation, photonic-band-gap and negative-index materials, and even most nonlinear phenomena such as frequency doubling, mixing or short pulse physics. However, spontaneous emission or intensity correlations are not (or incorrectly) captured. For example, photons in a single-mode laser well above the threshold are (counter-intuitively) completely uncorrelated whereas thermal photons have a tendency to “come” in pairs (within the coherence time).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Paul, Photonen. Eine Einführung in die Quantenoptik, B. G. Teubner Stuttgart, Leipzig (1999).

    Google Scholar 

  2. R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973).

    Google Scholar 

  3. R. Kidd et al. The evolution of the modern photon, Am. J. Phys. 57, 27 (1988).

    Article  Google Scholar 

  4. Ch. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge (2005).

    Google Scholar 

  5. M. O. Scully and S. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  6. H. A. Bachor, A Guide to Experiments in Quantum Optics, Wiley-VCH, New York (1998).

    Google Scholar 

  7. S. Haroche and J-M. Raimond, Exploring the Quantum, Oxford University Press, Oxford (2006).

    Book  Google Scholar 

  8. C. de Witt, A. Blandin, and C. Cohen-Tannoudji (eds), Quantum Optics and Quantum Electronics, Gordon&Breach, New York (1965).

    Google Scholar 

  9. R. J. Glauber (ed.), Quantum Optics, Academic, New York (1969).

    Google Scholar 

  10. Quantum Optics, S. M. Kay and A. Maitland (eds). Academic (1970).

    Google Scholar 

  11. L. Mandel and E. Wolf, (eds.), Coherence and Quantum Optics, Plenum, New York (1973).

    Google Scholar 

  12. R. v. Baltz, Photons and Photon Statistics: From Incandescent Light to Lasers, in: Frontiers of Optical Spectroscopy, B. Di Bartolo (ed.), Kluwer, New York (2004).

    Google Scholar 

  13. Ph. Lenard, Über die lichtelektrische Wirkung, Annalen der Physik (Leipzig), 8, 149 (1902).

    Google Scholar 

  14. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt, Annalen der Physik (Leipzig), 17, 132 (1905).

    Google Scholar 

  15. R. A. Millikan, A direct photoelectric determination of Planck’s h, Phys. Rev. 7, 355 (1914).

    Article  Google Scholar 

  16. A. H. Compton, The spectrum of scattered X-rays, Phys. Rev. 22, 409 (1923).

    Article  CAS  Google Scholar 

  17. E. O. Lawrence and J. W. Beams, The element of time in the photoelectric effect, Phys. Rev. 32, 478 (1928).

    Article  CAS  Google Scholar 

  18. A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Photoelectric mixing of incoherent light, Phys. Rev. 99, 1691 (1955).

    Article  Google Scholar 

  19. G. I. Taylor, Interference fringes with feeble light, Proc. Cambr. Phil. Soc. 15, 114 (1909).

    Google Scholar 

  20. A. J. Dempster and H. F. Batho, Light Quanta and Interference, Phys. Rev. 30, 644 (1927).

    Article  CAS  Google Scholar 

  21. L. Janossy, Experiments and Theoretical Considerations Concerning The Dual Nature of Light, in H. Haken and M. Wagner (eds.), Cooperative Phenomena, Springer-Verlag, Berlin (1973).

    Google Scholar 

  22. G. Breit, Are quanta unidirectional?, Phys. Rev. 22, 313 (1923).

    Article  Google Scholar 

  23. P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proc. R. Soc. A 114, 243 (1927), see also The Principles of Quantum Mechanics, fourth edition, Oxford University Press, Oxford (1958).

    Google Scholar 

  24. R. Hanbury Brown and R. Q. Twiss, Correlations between photons in two coherent beams of light, Nature 177, 27 (1956).

    Article  Google Scholar 

  25. J. F. Clauser, Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect, Phys. Rev. D 9, 853 (1974).

    Article  CAS  Google Scholar 

  26. J. N. Dodd, The Compton effect - a classical treatment, Eur. J. Phys. 4, 205 (1983).

    Article  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Theoretische Physik, Akademie Verlag, Berlin (1970).

    Google Scholar 

  28. R. J. Glauber, The Quantum Theory of Optical Coherence, Phys. Rev. 130, 2529 (1963), Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131, 2766 (1964), and in Refs.[8, 9].

    Google Scholar 

  29. H. C. Ohanian, What is spin?, Am. J. Phys. 54, 500 (1986).

    Article  Google Scholar 

  30. Ph. Grangier, A. Aspect and J. Vigue, Quantum interference effect for two atoms radiating a single photon, Phys. Rev. Lett. 54, 418 (1985).

    Article  CAS  Google Scholar 

  31. S. F. Jacobs, How monocromatic is laser light?, Am. J. Phys. 47, 597 (1979).

    Article  Google Scholar 

  32. C. H. Holbrow, E. Galvez, and M. E. Parks, Photon quantum mechanics and beam splitters, Am. J. Phys. 70, 260 (2002).

    Article  Google Scholar 

  33. S. Prasad, M. O. Scully, and W. Martienssen, A quantum description of the beam splitter, Opt. Commun. 62, 139 (1987).

    Article  CAS  Google Scholar 

  34. P. Grangier, G. Roger, and A. Aspect, Experimental evidence for photon anticorrelation effects on a beam splitter: a new light on single-photon interferences. Eur. Phys. Lett. 1, 173 (1986). See also Physics World, Feb. (2003).

    Google Scholar 

  35. R. Hanbury Brown, The Intensity Interferometer, Taylor& Francis (1974); see also http://www.science.org.au/academy/memoirs/brown.htm

  36. G. A. Rebka and R. V. Pound, Time-correlated photons, Nature 180, 1035 (1957).

    Article  Google Scholar 

  37. B. L. Morgan and L. Mandel, Measurement of photon bunching in thermal light, Phys. Rev. Lett. 16, 1012 (1966); H. J. Kimble, M. Dagenais, and L. Mandel, Photon antibunching in resonance fluorescence, Phys. Rev. Lett 39, 691 (1977).

    Google Scholar 

  38. W. Martiensen and E. Spiller, Coherence and fluctuations in light beams, Am. J. Phys. 32, 919 (1964).

    Article  Google Scholar 

  39. F. T. Arecchi, E. Gatti, and A. Sona, Time distribution of photons from coherent and Gaussian sources, Phys. Lett. 20, 27 (1966).

    Article  CAS  Google Scholar 

  40. M. Dagenais and L. Mandel, Investigations of two-time correlations in photon emissions from a single atom, Phys. Rev. A18, 2217 (1978).

    Google Scholar 

  41. F. Diedrich and H. Walther, Nonclassical radiation of a single stored ion, Phys. Rev. Lett. 58, 203 (1987).

    Article  CAS  Google Scholar 

  42. M. Kobayashi and H. Inaba, Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information, Appl. Opt. 39, 183 (2000).

    Article  CAS  Google Scholar 

  43. I. Langmuir, Pathological Science, Phys. Today, Oct. 1989, p. 36.

    Google Scholar 

  44. C. H. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between

    Google Scholar 

  45. two photons by interference, Phys. Rev. Lett. 59, 2044 (1987).

    Google Scholar 

  46. Z. Y. Ou and L. Mandel, Observation of spatial quantum beating with separated photodetectors, Phys. Rev. Lett. 61, 54 (1988).

    Article  Google Scholar 

  47. J. Beugnon et al. (Grangier’s group), Quantum interference between two single photons emitted by independently trapped atoms, Lett Nat 440, 779 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Baltz, R.V. (2011). Photons and Photon Correlation Spectroscopy. In: Bartolo, B., Collins, J. (eds) Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9977-8_3

Download citation

Publish with us

Policies and ethics