Skip to main content

Two-Photon Absorption and Applications to Biological Systems

  • Conference paper
  • First Online:
  • 2039 Accesses

Abstract

Fluorescent ions and molecules are important probes for the investigation of biological systems. To initiate the fluorescence, such ions and molecules are usually excited by absorption of a single photon. It is often advantageous, however, to excite the molecule using two or more photons. In this article we examine the multiphoton absorption process, and discuss of the advantages and disadvantages it offers for the investigation of biological systems. The main point of this article is to review the basic physics of two-photon absorption process. We also define the two-photon absorption cross section and discuss how it is measured. Finally, the advantages of two photon absorption are discussed and some applications to biological systems are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz J. R. (2006), Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York.

    Book  Google Scholar 

  2. Herschel J. F. W. (1845), Phil. Trans. Roy. Soc. (London) 135, 143

    Article  Google Scholar 

  3. Gregory J. (ed.) (1966) Handbook of fluorescent probes and research products, 9th ed., Molecular Probes Inc., Eugene, OR

    Google Scholar 

  4. Jablonski A. (1935), Z. Phys. 94, 38

    Article  CAS  Google Scholar 

  5. Stokes G. G. (1852), Phil. Trans. R. Soc. (London) 142, 463

    Article  Google Scholar 

  6. Kasha M. (1950), Disc. Faraday Soc. 9, 14

    Article  Google Scholar 

  7. Berlman I. B. (1971), Handbook of aromatic molecules, 2nd ed., Academic, New York

    Google Scholar 

  8. Stern O. and Volmer M. (1919), Phys. Z. 20, 183

    CAS  Google Scholar 

  9. Albani J. R. (2007), Principles and Applications of Fluorescence Spectroscopy, Blackwell Publishing, New York

    Book  Google Scholar 

  10. Stryer L. (1978), Annu. Rev. Biochem. 47, 819

    Article  CAS  Google Scholar 

  11. Berberan-Santos M. N. (2001), in New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, 18, 733, B. Valeur and J.C. Brochon eds, Springer, New York

    Google Scholar 

  12. Royer C. A. (1966), Biophys. J. 68, 1191

    Article  Google Scholar 

  13. Eyring H., Walter J and Kimball G. F. (1944), Quantum Chemistry, Wiley, New York, p. 351

    Google Scholar 

  14. Morgenau H. (1931), Phys. Rev. 38, 747

    Article  Google Scholar 

  15. Morgenau H. (1939), Rev. Mod. Phys. 11, 1

    Article  Google Scholar 

  16. Carlson B. C. and Rushbrooke G. S. (1950), Proc. Camb. Phil. Soc. 46, 626

    Article  Google Scholar 

  17. Watts R. K. (1975), in Optical Properties of Ions in Solids, B. Di Bartolo ed., Plenum Press, New York and London, p. 307

    Google Scholar 

  18. Perrin F. (1928), Compt. Rend. 178, 1978

    Google Scholar 

  19. Stern O. and Volmer M. (1919), Physik Z. 20, 183

    CAS  Google Scholar 

  20. Förster Th. (1949), Z. Naturforsch 4a, 321

    Google Scholar 

  21. Förster Th. (1959), Discussions Faraday Soc. 27, 7

    Article  Google Scholar 

  22. Galanin M. D, (1955), Sov. Phys. JETP 1, 317

    Google Scholar 

  23. Reif F. (1965), Fundamentals of Statistical and Thermal Physics, McGraw Hill, New York, p.483

    Google Scholar 

  24. Yokota M. and Tanimoto O. (1967), J. Phys. Soc. Japan 22, 779

    Article  CAS  Google Scholar 

  25. Watts R. K. and Richter H. J. (1972), Phys. Rev. B6, 1584

    Google Scholar 

  26. Karpick J. T. and Di Bartolo B. (1971), J. of Luminescence 4, 309

    Article  CAS  Google Scholar 

  27. Lakowicz J. R. (2006), Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York

    Book  Google Scholar 

  28. Clegg R. M. (1966), in Fluorescence Imaging Spectroscopy, X. F. Wang and B. Herman, eds., p. 179, Wiley, New York

    Google Scholar 

  29. Yokota M. and Tanimoto O. (1967), J. Phys. Soc. Japan 22(3), 779

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Collins, J. (2011). Two-Photon Absorption and Applications to Biological Systems. In: Bartolo, B., Collins, J. (eds) Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9977-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9977-8_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9976-1

  • Online ISBN: 978-90-481-9977-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics