Skip to main content

Biophotonics: Harnessing Light for Biology and Medicine

Nonlinear Optical Imaging and Light Induced Therapy

  • Conference paper
  • First Online:
Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation

Abstract

Biophotonics is a new multidisciplinary frontier which utilizes light–matter interactions for bioimaging, sensing diagnostics and light activated as well as optically tracked therapies. This article is focused on use of nonlinear optical processes for bio imaging as well as for light induced therapy. Examples illustrating recent achievements in these research fields are provided from our work at the Institute for Lasers, Photonics and Biophotonics. We present our progress in multimodal bioimaging using a combination of nonlinear optical phenomena such as two-photon induced fluorescence, coherent anti-Stokes Raman scattering (CARS), second harmonic generation and sum frequency generation. Synergy of the techniques employing these phenomena in a multimodal imaging approach enables chemically selective imaging and probing of the local macro molecular content in biological specimens. We also provide examples of two-photon induced fluorescence microscopy and two-photon induced therapy using specially designed molecules and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prasad, P.N., Introduction to biophotonics. 2003, Hoboken, NJ: Wiley-Interscience. 593 p.

    Book  Google Scholar 

  2. Michaelis, J., et al., Optical microscopy using a single-molecule light source. Nature, 2000. 405(6784): p. 325–8.

    Article  CAS  Google Scholar 

  3. Lichtman, J.W. and J.A. Conchello, Fluorescence microscopy. Nat Methods, 2005. 2(12): p. 910–9.

    Article  CAS  Google Scholar 

  4. Egger, M.D. and M. Petran, New reflected-light microscope for viewing unstained brain and ganglion cells. Science, 1967. 157(786): p. 305–7.

    Article  CAS  Google Scholar 

  5. Sevick-Muraca, E.M., J.P. Houston, and M. Gurfinkel, Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol, 2002. 6(5): p. 642–50.

    Article  CAS  Google Scholar 

  6. Campagnola, P.J., et al., High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J, 1999. 77(6): p. 3341–49.

    Article  CAS  Google Scholar 

  7. Fu, A.H., et al., Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett, 2007. 7(1): p. 179–82.

    Article  CAS  Google Scholar 

  8. Kachynski, A.V., et al., Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C, 2008. 112(29): p. 10721–24.

    Article  CAS  Google Scholar 

  9. Hanlon, E.B., et al., Prospects for in vivo Raman spectroscopy. Phys Med Biol, 2000. 45(2): p. R1–59.

    Article  CAS  Google Scholar 

  10. Maker, P.D. and R.W. Terhune, study of optical effects due to an induced polarization third order in electric field strength. Phys Rev, 1965. 137(3A): p. A801–&.

    Article  Google Scholar 

  11. Evans, C.L., et al., Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 2005. 102(46): p. 16807–12.

    Article  CAS  Google Scholar 

  12. Xie, X.S., J. Yu, and W.Y. Yang, Living cells as test tubes. Science, 2006. 312(5771): p. 228–30.

    Article  CAS  Google Scholar 

  13. Cheng, J.X., et al., Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology. Biophys J, 2002. 83(1): p. 502–09.

    Article  CAS  Google Scholar 

  14. Nan, X., J.X. Cheng, and X.S. Xie, Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res, 2003. 44(11): p. 2202–8.

    Article  CAS  Google Scholar 

  15. Le, T.T., T.B. Huff, and J.X. Cheng, Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer, 2009. 9: p. 42.

    Article  CAS  Google Scholar 

  16. Cheng, J.X. and X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J Phys Chem B, 2004. 108(3): p. 827–40.

    Article  CAS  Google Scholar 

  17. Cheng, J.X., et al., Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 2003. 100(17): p. 9826–30.

    Article  CAS  Google Scholar 

  18. Evans, C.L. and X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem, 2008. 1: p. 883–909.

    Article  CAS  Google Scholar 

  19. Volkmer, A., Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J Phys D-Appl Phys, 2005. 38(5): p. R59–81.

    Article  CAS  Google Scholar 

  20. Kornfield, H.J. and A.A. Werder, A differential nucleic acid fluorescent stain applied to cell culture systems. Cancer, 1960. 13: p. 458–61.

    Article  CAS  Google Scholar 

  21. Huff, T.B. and J.X. Cheng, In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J Microsc, 2007. 225(Pt 2): p. 175–82.

    Article  CAS  Google Scholar 

  22. Krafft, C., B. Dietzek, and J. Popp, Raman and CARS microspectroscopy of cells and tissues. Analyst, 2009. 134(6): p. 1046–57.

    Article  CAS  Google Scholar 

  23. Brakenhoff, G.J., P. Blom, and P. Barends, Confocal scanning light-microscopy with high aperture immersion lenses. J Microsc-Oxford, 1979. 117(Nov): p. 219–32.

    Google Scholar 

  24. Conchello, J.A. and J.W. Lichtman, Optical sectioning microscopy. Nat Methods, 2005. 2(12): p. 920–31.

    Article  CAS  Google Scholar 

  25. Denk, W., J.H. Strickler, and W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990. 248(4951): p. 73–6.

    Article  CAS  Google Scholar 

  26. Konig, K., Multiphoton microscopy in life sciences. J Microsc, 2000. 200(Pt 2): p. 83–104.

    Article  CAS  Google Scholar 

  27. Zipfel, W.R., R.M. Williams, and W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol, 2003. 21(11): p. 1369–77.

    Article  CAS  Google Scholar 

  28. Prasad, P.N., Nanophotonics. 2004, Hoboken, NJ: Wiley-Interscience. xv, 415 p.

    Google Scholar 

  29. Alivisatos, P., The use of nanocrystals in biological detection. Nat Biotechnol, 2004. 22(1): p. 47–52.

    Article  CAS  Google Scholar 

  30. Gao, X., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004. 22(8): p. 969–76.

    Article  CAS  Google Scholar 

  31. Kim, S., et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol, 2004. 22(1): p. 93–7.

    Article  Google Scholar 

  32. Chan, W.C., et al., Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol, 2002. 13(1): p. 40–6.

    Article  CAS  Google Scholar 

  33. Yong, K.T., et al., Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem, 2009. 19(27): p. 4655–72.

    Article  CAS  Google Scholar 

  34. Yong, K.T., et al., Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Lett, 2007. 7(3): p. 761–5.

    Article  CAS  Google Scholar 

  35. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535–45.

    Article  CAS  Google Scholar 

  36. Dichtel, W.R., et al., Singlet oxygen generation via two-photon excited FRET. J Am Chem Soc, 2004. 126(17): p. 5380–81.

    Article  CAS  Google Scholar 

  37. Oar, M.A., et al., Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET. Chem Mater, 2006. 18(16): p. 3682–92.

    Article  CAS  Google Scholar 

  38. Oar, M.A., et al., Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer. Chem Mater, 2005, 17(9): p. 2267–75.

    Article  CAS  Google Scholar 

  39. Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enz Regul, 2001, 41: p. 189–207.

    Article  CAS  Google Scholar 

  40. Kim, S., et al., Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc, 2007. 129(9): p. 2669–75.

    Article  CAS  Google Scholar 

  41. Roy, I., et al., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. J Am Chem Soc, 2003. 125(26): p. 7860–65.

    Article  CAS  Google Scholar 

  42. Ohulchanskyy, T.Y., et al., Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett, 2007. 7(9): p. 2835–42.

    Article  CAS  Google Scholar 

  43. Kim, S., et al., Organically modified silica nanoparticles with intraparticle heavy-atom effect on the encapsulated photosensitizer for enhanced efficacy of photodynamic therapy. J Phys Chem C, 2009. 113(29): p. 12641–44.

    Article  CAS  Google Scholar 

  44. Reeves, K.J., M.W.R. Reed, and N.J. Brown, Is nitric oxide important in photodynamic therapy? J Photochem Photobiol B-Biol, 2009. 95(3): p. 141–7.

    Article  CAS  Google Scholar 

  45. Tozer, G.M. and S.A. Everett, Nitric oxide in tumour biology and cancer therapy. Part 1: Physiological aspects. Clin Oncol (R Coll Radiol), 1997. 9(5): p. 282–93.

    CAS  Google Scholar 

  46. Cui, S., et al., Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res, 1994. 54(9): p. 2462–7.

    CAS  Google Scholar 

  47. Zheng, Q.D., et al., Water-soluble two-photon absorbing-nitrosyl complex for light-activated therapy through nitric oxide release. Mole Pharma, 2008. 5(3): p. 389–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ohulchanskyy, T.Y., Pliss, A.M., Prasad, P.N. (2011). Biophotonics: Harnessing Light for Biology and Medicine. In: Bartolo, B., Collins, J. (eds) Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9977-8_1

Download citation

Publish with us

Policies and ethics