Skip to main content

Real-Time Aeroservoelastic Analysis of Wind-Turbines by Free Multibody Software

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 23))

Abstract

Wind-turbines represent an important means to extract energy from the environment in a ‘green’ manner. The concept of extracting energy from the wind dates back thousands of years, including not only power generation (e.g. mills, water pumps) but also direct locomotion (e.g. sailing). Modern wind-energy technology relies on efficient aerodynamic design and durable mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HAa (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Progr Aero Sci 42(4):285–330

    Article  Google Scholar 

  2. Barlas TK, van Kuik GAM (2009) Review of state of the art in smart rotor control research for wind turbines. Progr Aero Sci 46(1):1–27

    Article  Google Scholar 

  3. Real-time application interface (RTAI). http://www.rtai.org/ (last accessed March 2009)

  4. Multibody dynamics (MBDyn). http://www.aero.polimi.it/mbdyn/ (last accessed March 2009)

  5. Garsch R, Twele J (2002) Wind power plants, fundamentals, design, construction, and operation. In: James and James (ed) Solarpraxis, Berlin

    Google Scholar 

  6. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060

    Book  Google Scholar 

  7. National renewable energy laboratory (NREL). http://www.nrel.gov/ (last accessed November 2009)

  8. Matlab. http://www.mathworks.com/ (last accessed November 2009)

  9. Scilab. http://www.scilab.org/ (last accessed November 2009)

  10. Scicos. http://www.scicos.org/ (last accessed November 2009)

  11. NI LabVIEW. http://www.ni.com/labview/ (last accessed November 2009)

  12. NI MATRIXx. http://www.ni.com/matrixx/ (last accessed November 2009)

  13. Buhl ML Jr, Manjock A (2006) A comparison of wind turbine aeroelastic codes used for certification. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USA, 9–12 January

    Book  Google Scholar 

  14. Meng F, Masarati P, van Tooren M (2009) Free/open source multibody and aerodynamic software for aeroservoelastic analysis of wind-turbines. In: 47th AIAA aerospace sciences meeting, Orlando, Florida, USA, 5–8 January

    Google Scholar 

  15. Morandini M, Mantegazza P (2007) Using dense storage to solve small sparse linear systems. ACM Trans Math Software 33(1), doi:10.1145/1206040.1206045

    Article  Google Scholar 

  16. González M, González F, Dopico D, Luaces A (2008) On the effect of linear algebra implementations in real-time multibody system dynamics. Comput Mech 41(4):607–615

    Article  MATH  Google Scholar 

  17. Attolico M, Masarati P (2003) A multibody user-space hard real-time environment for the simulation of space robots. In: 5th real-time linux workshop, Valencia, Spain, 9–11 November

    Google Scholar 

  18. Masarati P, Attolico M, Nixon MW, Mantegazza P (2004) Real-time multibody analysis of wind-tunnel rotorcraft models for virtual experiment purposes. In: AHS 4th decennial specialists’ conference on aeromechanics, Fisherman’s Wharf, San Francisco, CA, 21–23 January

    Google Scholar 

  19. Attolico M, Masarati P, Mantegazza P (2005) Trajectory optimization and real-time simulation for robotics applications. In: Multibody dynamics 2005, ECCOMAS thematic conference, Madrid, Spain, 21–24 June

    Google Scholar 

  20. Masarati P, Morandini M, Quaranta G, Mantegazza P (2003) Open-source multibody analysis software. In: Multibody dynamics 2003, international conference on advances in computational multibody dynamics, Lisboa, Portugal, 1–4 July

    Google Scholar 

  21. Masarati P, Morandini M, Quaranta G, Mantegazza P (2005) Computational aspects and recent improvements in the open-source multibody analysis software “MBDyn”. In: Multibody dynamics 2005, ECCOMAS thematic conference, Madrid, Spain, 21–24 June

    Google Scholar 

  22. Fingersh LJ, Johnson K (2002) Controls advanced research turbine (CART) commissioning and baseline data collection. NREL/TP-500-32879

    Book  Google Scholar 

  23. Stol KA (2003) Geometry and structural properties for the controls advanced research turbine (CART) from model tuning. NREL/SR-500-32087

    Google Scholar 

  24. Wright AD, Fingersh LJ, Balas MJ (2006) Testing state-space controls for the controls advanced research turbine. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USA, 9–12 January

    Google Scholar 

  25. Wright AD, Fingersh LJ, Stol KA (2007) Designing and testing controls to mitigate tower dynamic loads in the controls advanced research turbine. In: 45th AIAA aerospace sciences meeting and exhibit, wind energy symposium, Reno, Nevada, USA, 8–11 January

    Google Scholar 

  26. Stol KA, Fingersh LJ (2003) Wind turbine field testing of state-space control designs. NREL/SR-500-35061

    Google Scholar 

  27. Fuglseth TP (2005) Modelling a 2.5 MW direct driven wind turbine with permanent magnet generator. Technical report, Department of Electrical Power Engineering. Norwegian University of Science and Technology. http://www.elkraft.ntnu.no/smola2005/Topics/9.pdf

    Google Scholar 

  28. Hansen MH, Hansen A, Larsen TB, Øye S, Sørensen P, Fuglsang P (2005) Control design for a pitch regulated, variable speed wind turbine. RISØ R-1500(EN), Denmark

    Google Scholar 

  29. Bucher R, Dozio L (2003) CACSD under RTAI linux with RTAI-LAB. In: 5th real-time linux workshop, Valencia, Spain, 9–11 November

    Google Scholar 

  30. Lee D, Hodges DH (2004) Multi-flexible-body analysis for application to wind turbine control design. NREL/SR-500-35228

    Google Scholar 

  31. Bottasso CL, Croce A, Savini B, Sirchi W, Trainelli L (2006) Aero-servo-elastic modeling and control of wind turbines using finite-element multibody procedures. Multibody Syst Dyn 16:291–308

    Article  MATH  Google Scholar 

  32. Masarati P, Lanz M, Mantegazza P (2001) Multistep integration of ordinary, stiff and differential-algebraic problems for multibody dynamics applications. In: XVI Congresso Nazionale AIDAA, Palermo, 24–28 September, pp 71.1–10

    Google Scholar 

  33. Shabana AA (1997) Flexible multibody dynamics: Review of past and recent developments. Multibody Syst Dyn 1(2):189–222

    Article  MathSciNet  MATH  Google Scholar 

  34. Wallrapp O, Schwertassek R (1991) Representation of geometric stiffening in multibody system simulation. Int J Numer Meth Engng 32:1833–1850

    Article  MATH  Google Scholar 

  35. Géradin M, Cardona A (2001) Flexible multibody dynamics: A finite element approach. Wiley, Chichester

    Google Scholar 

  36. Ghiringhelli GL, Masarati P, Mantegazza P (2000) A multi-body implementation of finite volume beams. AIAA J 38(1):131–138

    Article  Google Scholar 

  37. Giavotto V, Borri M, Mantegazza P, Ghiringhelli GL, Caramaschi V, Maffioli GC, Mussi F (1983) Anisotropic beam theory and applications. Comput Struct 16(1–4):403–413

    Article  MATH  Google Scholar 

  38. Hodges DH (2006) Nonlinear Composite Beam Theory. AIAA - c2006 - XII. Reston, VA

    Google Scholar 

  39. Bauchau OA (1985) A beam theory for anisotropic materials. J Appl Mech 107:416–422

    Article  Google Scholar 

  40. Chen H, Yu W, Capellaro M (2009) A critical assessment of computer tools for calculating composite wind turbine blade properties. Wind Energy, published online December 14, doi:10.1002/we.372

    Google Scholar 

  41. Brenan KE, Campbell SLaV, Petzold LR (1989) Numerical solution of initial-value problems in differential–algebraic equations. North-Holland, New York

    MATH  Google Scholar 

  42. Quaranta G, Masarati P, Mantegazza P (2004) Assessing the local stability of periodic motions for large multibody nonlinear systems using POD. J Sound Vib, 271(3–5):1015–1038

    Article  MathSciNet  Google Scholar 

  43. Meng F, Pavel MD, van Tooren M (2008) Aeroelastic stability analysis of large scale horizontal axis wind turbines using reduced order system identification based on flexible nonlinear multi-body dynamics. In: 46th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USA, 7–10 January

    Google Scholar 

  44. EasyAnim. http://mecara.fpms.ac.be/EasyDyn/ (last accessed March 2009)

  45. Morandini M, Masarati P, Mantegazza P (2005) A real-time hardware-in-the-loop simulator for robotics applications. In: Multibody dynamics 2005, ECCOMAS thematic conference, Madrid, Spain, 21–24 June

    Google Scholar 

  46. Morandini M, Masarati P, Mantegazza P (2005) Performance improvements in real-time general-purpose multibody virtual experimenting of rotorcraft systems. In: 31st European rotorcraft forum, Firenze, Italy, 13–15 September

    Google Scholar 

  47. Fumagalli A, Masarati P (2009) Real-time computed torque control using general-purpose multibody software. Multibody Syst Dyn 22(1):47–68

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by ‘SI PARTE!’, a R&D project of ‘Regione Lombardia’ that addressed the development of innovative solutions for Embedded Real-Time Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cavagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cavagna, L., Fumagalli, A., Masarati, P., Morandini, M., Mantegazza, P. (2011). Real-Time Aeroservoelastic Analysis of Wind-Turbines by Free Multibody Software. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9971-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9971-6_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9970-9

  • Online ISBN: 978-90-481-9971-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics