Skip to main content

Real-Time Simulation of Extended Vehicle Drivetrain Dynamics

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 23))

Abstract

For the virtual engine development, testing and calibration, it is advantageous to use the same physical model on different platforms. Due to the complexity of the model and its evaluation one has to coop with serve evaluation restrictions on the realtime platform. For coupled problems which includes an electrical system, the equilibrium conditions include an algebraic constraints. Hence it is not sufficient to use only an explicit time integration scheme. We extend an explicit scheme to a mixed scheme such that the overall performance per time step still is below the timing constraint of the realtime platform for reasonable complex model with electrical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MathWorks homepage http://www.mathworks.com.

References

  1. Arnold M, Burgermeister B, Eichberger A (2007) Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Syst Dyn 17:99–117

    Article  MATH  MathSciNet  Google Scholar 

  2. AVL Cruise. Theory Manual and User Guide, Version 3.0 (January 2005) AVL, Graz

    Google Scholar 

  3. Bader G, Deuflhard P (1983) A Semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer Math 41:373–398

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  5. Burgermeister B, Arnold M, Eichberger A (2009) Smooth velocity approximation for constrained systems in real-time simulation. In: Proceedings of multibody dynamics 2009, ECCOMAS thematic conference. Warsaw

    Google Scholar 

  6. Burgermeister B, Arnold M, Esterl B (2006) DAE time integration for real-time applications in multi-body dynamics. Z. Angew. Math. Mech. 86(10):759–771

    Article  MATH  MathSciNet  Google Scholar 

  7. Cuadrado J, Dopico D, Naya MA, Gonzalez M (2004) Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integrators. Multibody Syst Dyn 12:117–132

    Article  MATH  Google Scholar 

  8. Elmqvist H, Mattsson S, Olsson H (2002) New methods for HIL simulation of stiff models. In: Proceedings of 2nd international modelica conference. Oberpfaffenhofen, Germany

    Google Scholar 

  9. Elmqvist H, Mattsson S, Olsson H, Andreasson J, Otter M, Schweiger C, Brück D (2003) Real-time simulation of detailed automotive models. In: Proceedings of 3th international modelica conference. Linkping, Sweden

    MATH  Google Scholar 

  10. Elmqvist H, Mattsson S, Olsson H, Andreasson J, Otter M, Schweiger C, Brück D (2004) Real-time simulation of detailed vehicle and powertrain dynamics. In: Electronics simulation and optimization (SAE 2004 World Congress). Detroit, USA, March, 2004, SAE International. Document Number: 2004-01-0768

    Book  Google Scholar 

  11. Esterl B, Butz T, Simeon B, Burgermeister B (2007) Real-time capable vehicle-trailer coupling by algorithms for differential-algebraic equations. Vehicle Syst Dyn 45:819–834

    Article  Google Scholar 

  12. Fischer HC (1990) Schnelle automatische Differentiation, Einschliessungsmethoden und Anwendungen. PhD Thesis, University Karlsruhe, Germany

    Google Scholar 

  13. Fischer R, Kirsten K (2006) The turbo-hybrid: Holistic approach for a modern gasoline hybrid drive. In: Proceedings of 27th international Vienna motor symposium. Vienna, Austria

    Google Scholar 

  14. Föllinger O (1992) Regelungstechnik. Hüthig, Heidelberg

    Google Scholar 

  15. Gonzalez M, Gonzlez F, Dopico D, Luaces A (2007) On the effect of linear algebra implementations in real-time multibody system dynamics. In: Bottasso C, Masarati P, Trainelli L (ed) Multibody dynamics, 2005, Milano, Italy, pp 25–28

    Google Scholar 

  16. Hairer E, Nørsett SP, Wanner G (2000) Solving ordinary differential equations I: Nonstiff problems. Springer, Berlin

    Google Scholar 

  17. Hairer E, Wanner G (2002) Solving ordinary differential equations: Stiff and differential-algebraic problems. Springer, Berlin

    Google Scholar 

  18. Hamann P, Mehrmann V (2005) Numerical solution of hybrid differential-algebraic equations - Available via Matheon http://www.matheon.net/research/list_preprints.asp

  19. Hasewend W (1998) Verfahren zur Berechnungsgestützten Entwicklung moderner Antriebssysteme. PhD Thesis, Technical University Graz, Austria

    Google Scholar 

  20. de Jalón JG, Bayo E (1994) Kinematic and dynamic simulation of multibody systems – the real-time challenge. Springer, New York

    Google Scholar 

  21. Kim S, Jeong WH, Tak TO, Kim LK (2009) Performance evaluation of intelligent chassis controller using HIL-simulator based on real-time multibody vehicle dynamics. In: Proceedings of multibody dynamics 2009, ECCOMAS Thematic Conference. Warsaw

    Google Scholar 

  22. Korkealaakso PM, Rouvinen AJ, Moisio SM, Peusaari JK (2007) Development of a real-time simulation environment. Multibody Syst Dyn 17:177–194

    Article  MATH  Google Scholar 

  23. Mehrmann V, Wunderlich L (2008) Hybrid systems of differential-algebraic equations Analysis and numerical solution. Available via Matheon http://www.matheon.net/research/list_preprints.asp

  24. Morawietz L, Risse S, Christ T, Zellbeck H, Reuss H (2005) Modelling an automotive power train and electrical power supply for HiL applications using Modelica. In: Proceedings of 4th international modelica conference. Hamburg University of Technology, Hamburg-Harburg

    Google Scholar 

  25. Pfau RU (2003) Numerical algorithms for the simulation and optimization of vehicle driving performance and fuel consumption. PhD Thesis, University Linz, Austria

    Google Scholar 

  26. Pfau RU (2007) A priori step size adaptation for the simulation of nonsmooth systems. Commun Numer Meth Eng 23(2):85–96

    Article  MATH  MathSciNet  Google Scholar 

  27. Pfau R, Schaden T (2009) Offline and real-time simulation of vehicle drivetrain dynamics. In: Proceedings of SIAM conference on computational science and engineering (CSE09). Miami, USA

    Google Scholar 

  28. Ramaswamy D, McGee R, Sivashankar S, Deshpande A, Allen J, Rzemien K, Stuart W (2004) A case study in hardware-in-the-loop testing: Development of an ECU for a hybrid electric vehicle. SAE Technical Paper Series

    Book  Google Scholar 

  29. Rill G, Chucholowski C (2007) Real time simulation of large vehicle systems. In: Proceedings of multibody dynamics 2007, ECCOMAS thematic conference. Milano, Italy

    Google Scholar 

  30. Rulka W, Pankiewicz E (2005) MBS approach to generate equations of motions for HIL-simulations in vehicle dynamics. Multibody Syst Dyn 14:367–386

    Article  MATH  Google Scholar 

  31. Schiela A, Bornemann F (2003) Sparsing in real time simulation. Z. Angew. Math. Mech. 83:637–647

    Article  MATH  MathSciNet  Google Scholar 

  32. Schiela A, Olsson H (2000) Mixed-mode integration for real-time simulation. In: Proceedings of Modelica Workshop 2000, Lund, Sweden, pp 69–75

    Google Scholar 

  33. Schlegel C, Bross M, Beater P (2002) HIL-Simulation of the Hydraulics and Mechanics of an Automatic Gearbox. In: Proceedings of 2nd international modelica conference. Oberpfaffenhofen, Germany

    Google Scholar 

  34. Schuette H, Waeltermann P (2005) Hardware-in-the-loop testing of vehicle dynamics controllers a technical survey. In: Proceedings of 2005 SAE world congress. Detroit

    Google Scholar 

  35. Soejima S, Matsuba T (2002) Application of mixed mode integration and new implicit inline integration at Toyota. In: Proceedings of 2nd International modelica conference, pp 65-1–65-6. Oberpfaffenhofen, Germany

    Google Scholar 

  36. Urch P, Huss A, Ebner P, Jürgens G, Pfau R (2009) Integrierte Fahrzeug Systemsimulation im Entwicklungsprozess von früher Konzeptphase bis zu Testläufen. In: Proceedings of 2. Grazer Symposium “VIRTUELLES FAHRZEUG”. Graz, Austria, April 27–28, 2009

    Google Scholar 

  37. Willumeit HP (1998) Modelle und Modellierungsverfahren in der Fahrzeugdynamik. B.G. Teubner, Stuttgart, Leipzig

    Google Scholar 

  38. Wu Y, Chen B, Hsieh F, Huang M, Wu Y (2006) Development of hardware-in-the-loop simulation for scooter engine control. SAE Technical Paper Series

    Book  Google Scholar 

  39. Zomotor A (1991) Fahrwerktechnik: Fahrverhalten. Vogel Fachbuch: Kraftfahrzeugtechnik. Würzburg

    Google Scholar 

Download references

Acknowledgements

The work of Ralf Pfau is supported by the “Bundesministerium für Wirtschaft und Arbeit” and by the government of Upper Austria within the framework “Industrielle Kompetenzzentren und Netzwerke”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf U. Pfau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pfau, R.U., Schaden, T. (2011). Real-Time Simulation of Extended Vehicle Drivetrain Dynamics. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9971-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9971-6_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9970-9

  • Online ISBN: 978-90-481-9971-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics