Skip to main content

A Flexible Multibody Pantograph Model for the Analysis of the Catenary–Pantograph Contact

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 23))

Abstract

The pantograph–catenary system is still the most reliable form of collecting electric energy for running trains. This system should ideally run with relatively low contact forces, in order to minimize wear and damage of the contacting elements but without contact loss to avoid power supply interruption and electric arching. However, the quality of the pantograph–catenary contact may be affected by operational conditions, defects on the overhead equipment, environmental conditions or by the flexibility of the pantograph components. In this work a flexible multibody methodology based on the use of the mean-axis conditions, as reference conditions, mode component synthesis, as a form of reducing the number of generalized coordinates of the system and virtual bodies, as a methodology to allow the use of all kinematic joints available for multibody modeling and application of external forces, are used to allow building the flexible multibody pantograph models. The catenary model is built in a linear finite element code developed in a Matlab environment, which is co-simulated with the multibody code to represent the complete system interaction. A thorough description of rigid-flexible multibody pantograph models is presented in a way that the proposed methodology can be used. Several flexible multibody models of the pantograph are described and proposed and the quality of the pantograph–catenary contact is analyzed and discussed in face of the flexibility of the overhead components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bocciolone M, Resta F, Rocchi D, Tosi A, Collina A (2006) Pantograph aerodynamic effects on the pantograph-catenary interaction. Vehicle Sys Dyn 44(S1):560–570

    Google Scholar 

  2. Pombo J, Ambrósio J, Pereira M, Rauter F, Collina A, Facchinetti A (2009) Influence of the aerodynamic forces on the pantograph-catenary system for high speed trains. Vehicle Syst Dyn 47(11):1327–1347

    Article  Google Scholar 

  3. EUROPAC Project no. 012440 (2007) Modelling of degraded conditions affecting pantograph-catenary interaction. Technical Report EUROPAC-D22-POLI-040-R1.0, Politecnico di Milano, Milan, Italy

    Google Scholar 

  4. Song J, Haug EJ (1980) Dynamic analysis of planar flexible mechanisms. Comput Methods Appl Mech Eng 24:359–381

    Article  MathSciNet  MATH  Google Scholar 

  5. Shabana A (1982) Dynamic analysis of large-scale inertia variant flexible systems. PhD thesis, University of Iowa, Iowa City

    Google Scholar 

  6. Shabana A, Wehage R (1989) A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct Mech 11:401–431

    Google Scholar 

  7. Yoo WS, Haug EJ (1986) Dynamics of flexible mechanical systems using vibration and static correction modes. ASME J Mech Trans Auto Design 108:315–322

    Google Scholar 

  8. Wu S, Haug EJ (1988) Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int J Numer Methods Eng 26:2211–2226

    Article  MATH  Google Scholar 

  9. Chang B, Shabana A (1990) Nonlinear finite element formulation for large displacement analysis of plates. ASME J Appl Mech 57:707–718

    Article  MATH  Google Scholar 

  10. Melzer F (1994) Symbolisch-numerische Modellierung Elastischer Mehrkorpersysteme mit Answendung auf Rechnerische Ledensdauervorhrsagen. PhD thesis, University of Stuttgart, Germany

    Google Scholar 

  11. Ambrósio J, Gonçalves J (2001) Complex flexible multibody systems with application to vehicle dynamics. Multibody Syst Dyn 6(2):163–182

    Article  MathSciNet  MATH  Google Scholar 

  12. Geradin M (1984) Finite element approach to kinematic and dynamic analysis of mechanisms using Euler parameters. In: Taylor C (ed.) Numerical Methods for Non-linear Problems, vol 2. Pineridge, Swansea

    Google Scholar 

  13. Geradin M, Cardona A, Doan DB, Duysens J (1995) Finite element modeling concepts in multibody dynamics. In Pereira MS, Ambrósio J (eds) Computer aided analysis of rigid and flexible multibody systems. Kluwer, Dordrecht, The Netherlands, pp 233–284

    Google Scholar 

  14. Simo JC, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions – the planar case: Part I. ASME J Appl Mech 53:849–854

    Article  MATH  Google Scholar 

  15. Kane TR, Ryan RR, Banerjee AK (1987) Comprehensive theory for the dynamics of a general beam attached to a moving rigid base. J Guidance Control Dyn 10:139–151

    Article  Google Scholar 

  16. Bathe K-J, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986

    Article  MATH  Google Scholar 

  17. Belytschko T, Hsieh BJ (1973) Nonlinear transient finite element analysis with convected coordinates. Int J Numer Methods Eng 7:255–271

    Article  MATH  Google Scholar 

  18. Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comp Methods Appl Mech Eng 66:125–161

    Article  MathSciNet  MATH  Google Scholar 

  19. Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438

    Article  MathSciNet  MATH  Google Scholar 

  20. Cardona A, Geradin M (1991) Modelling of superelements in mechanism analysis. Int J Numer Methods Eng 32:1565–1594

    Article  MATH  Google Scholar 

  21. Shabana A (1997) Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn 1:339–348

    Article  MathSciNet  MATH  Google Scholar 

  22. Ambrósio J, Nikravesh PE (1992) Elastic-plastic deformations in multibody dynamics. Nonlinear Dyn 3:85–104

    Article  Google Scholar 

  23. Ambrósio J, Pereira M (1994) Flexibility in multibody dynamics with applications to crashworthiness. In: Pereira MS, Ambrósio J (eds) Computer aided analysis of rigid and flexible multibody systems. Kluwer, Dordrecht, The Netherlands, pp 199–232

    Google Scholar 

  24. Ambrósio J, Ravn P (1997) Elastodynamics of multibody systems using generalized inertial coordinates and structural damping. Mech Struct Mach 25:201–219

    Article  Google Scholar 

  25. Cavin RK, Dusto AR (1977) Hamilton’s principle: finite element method and flexible body dynamics. AIAA J 15(12):1684–1690

    Article  MATH  Google Scholar 

  26. Pereira M, Proença P (1991) Dynamic analysis of spatial flexible multibody systems using joint co-ordinates. Int J Numer Methods Eng 32:1799–1812

    Article  MATH  Google Scholar 

  27. Nikravesh PE, Lin Y-S (2003) Body reference frames in deformable multibody systems. Int J Multiscale Comput Eng 1:1615–1683

    Article  Google Scholar 

  28. Ambrósio J (2007) Flexible multibody systems with linear and nonlinear deformations. In: Flores P, Silva M (eds) Proceedings of DSM2007 –Conferência Nacional de Dinâmica de Sistemas Multicorpo, Guimarães, Portugal, 6–7 December 2007

    Google Scholar 

  29. Ambrósio J (2003) Efficient kinematic joint descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int J Numer Methods Eng 56:1771–1793

    Article  MATH  Google Scholar 

  30. Bae DS, Han JM, Choi JH (2000) A implementation method for constrained flexible multibody dynamics using virtual bodies and joint. Multibody Syst Dyn 4:207–226

    Article  Google Scholar 

  31. Gonçalves J, Ambrósio J (2002) Advanced modeling of flexible multibody dynamics using virtual bodies. Comput Assist Mech Eng Sci 9(3):373–390

    MATH  Google Scholar 

  32. Gonçalves J (2002) Rigid and flexible multibody systems optimization for vehicle dynamics. PhD dissertation, Instituto Superior Técnico, Lisbon, Portugal

    Google Scholar 

  33. Gardou M (1984) Etude du comportement dynamique de l’ensemble pantographe-caténaire (Study of the dynamic behavior of the pantograph-catenary) (in French). PhD thesis, Paris, France

    Google Scholar 

  34. Jensen CN (1997) Nonlinear systems with discrete and discontinuous elements. PhD thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  35. Dahlberg T (2006) Moving force on an axially loaded beam – with applications to a railway overhead contact wire. Vehicle Syst Dyn 44(8):631–644

    Article  Google Scholar 

  36. Labergri F (2000) Modélisation du Comportement Dynamique du Système Pantographe-Caténaire (Model for the Dynamic Behavior of the System Pantograph-Catenary) (in French). PhD thesis, Ecole Doctorale de Mechanique de Lyon, Lyon, France

    Google Scholar 

  37. Seo J-H, Sugiyama H, Shabana A (2004) Large deformation analysis of the pantograph-catenary systems. Technical Report #MBS04–7-UIC, Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, Illinois

    Google Scholar 

  38. Seo J-H, Sugiyama H, Shabana A (2005) Modeling pantograph-catenary interactions for multibody railroad vehicle systems. In: Goicolea J, Cuadrado J, García Orden J (eds) Proceedings of the Multibody Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain

    Google Scholar 

  39. Arnold M, Simeon B (2000) Pantograph and catenary dynamics: a benchmark problem and its numerical solution. Appl Numer Math 34(4):345–362

    Article  MathSciNet  MATH  Google Scholar 

  40. Veitl A, Arnold M (1999) Coupled simulations of multibody systems and elastic structures. In: Ambrósio J, Schiehlen W (eds) Proceedings of EUROMECH Colloquium 404 Advances in Computational Multibody Dynamics, Lisbon, Portugal, 20–23 September 1999, pp 635–644

    Google Scholar 

  41. Hulbert G, Ma Z-D, Wang J (2005) Gluing for dynamic simulation of distributed mechanical systems. In: Ambrósio J (ed) Advances on computational multibody systems. Springer, Dordrecht, The Netherlands, pp 69–94

    Chapter  Google Scholar 

  42. Kubler R, Schiehlen W (2000) Modular simulation in multibody system dynamics. Multibody Syst Dyn 4:107–127

    Article  Google Scholar 

  43. Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. AMSE J Mech Design 112:369–376

    Article  Google Scholar 

  44. Hughes T (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood-Cliffs

    MATH  Google Scholar 

  45. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech 85:67–94

    Google Scholar 

  46. Augusta Neto M, Ambrósio J (2003) Stabilization methods for the integration of differential-algebraic equations in the presence of redundant constraints. Multibody Syst Dyn 10:81–105

    Article  MathSciNet  MATH  Google Scholar 

  47. Gear CW, Petzold L (1984) ODE methods for the solutions of differential/algebraic equations. SIAM J Numer Anal 21(4):716–728

    Article  MathSciNet  MATH  Google Scholar 

  48. Nikravesh P (1988) Computer-aided analysis of mechanical systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  49. Rauter F, Pombo J, Ambrósio J, Chalansonnet J, Bobillot A, Pereira P (2007) Contact model for the pantograph-catenary interaction. JSME Int J Syst Design Dyn 1(3):447–457

    Article  Google Scholar 

  50. Ambrósio J, Pombo J, Rauter F, Pereira M (2008) A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. In: Bottasso CL (ed) Multibody dynamics. Springer, Dordrecht, The Netherlands, pp 231–252

    Chapter  Google Scholar 

  51. SNCF (2005) Numerical and experimental analysis of a pantograph (Analyse numérique et experimentale d’un pantograph) (in French). Paris, France

    Google Scholar 

Download references

Acknowledgement

The work presented has been developed in the framework of the European Project EUROPAC (European Optimized Pantograph Catenary Interface, contract no. STP4-CT-2005-012440) with the partners SNCF, Alstom Transport, ARTTIC, Banverket, Ceské dráhy akciová společnost, Deutsche Bahn, Faiveley Transport, Mer Mec SpA, Politecnico di Milano, Réseau ferré de France, Rete ferroviara italiana, Trenitalia SpA, UNIFE, Kungliga Tekniska Högskolan. The collaboration of SNCF, Faiveley Transport and Politécnico di Milano to the work reported is specially acknowledged. The support of Fundação para a Ciência e Tecnologia (FCT) through the grant SFRH/BD/18848/2004 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ambrósio, J., Rauter, F., Pombo, J., Pereira, M.S. (2011). A Flexible Multibody Pantograph Model for the Analysis of the Catenary–Pantograph Contact. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9971-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9971-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9970-9

  • Online ISBN: 978-90-481-9971-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics