Skip to main content

Stable Isotopic Analyses of Laetoli Fossil Herbivores

  • Chapter
  • First Online:
Paleontology and Geology of Laetoli: Human Evolution in Context

Part of the book series: Vertebrate Paleobiology and Paleoanthropology Series ((VERT))

Abstract

In order to further refine early hominin paleoecology at Laetoli, over 500 specimens of fossil enamel and ostrich eggshell fragments collected from the Laetolil Beds and the Upper Ndolanya Beds were analyzed isotopically. The goal was to develop a high-resolution spatio-temporal framework for identifying and characterizing foraging patterns of mammalian herbivore lineages and fossil ostriches that could be used to investigate aspects of plant physiognomy and climate through the Laetoli succession. In general, dietary patterns at Laetoli suggest heterogeneous ecosystems with both C3 and C4 dietary plants available that could support grassland, woodland, and forested communities. All large-bodied mammalian herbivores analyzed yielded dietary signatures indicating mixed grazing/browsing strategies or exclusive reliance on C3 browse, more consistent with wooded than grassland-savanna biomes. Although there were no obvious uniform dietary shifts within specific mammalian herbivore groups in the sequence, the transition from the Upper Laetolil Beds to the Upper Ndolanya Beds documents a significant increase in the representation of grazing bovids. Relative to extant taxa in related lineages, the isotopic ranges of a number of Laetoli fossil herbivores are anomalous, indicating significantly more generalized intermediate C3/C4 feeding behaviors, perhaps indicative of dietary niches and habitat types with no close modern analogs. Diets of ostriches as reflected in the isotopic composition of eggshell components indicate predominantly C3 diets but with discrete isotopic shifts within the sequence linked to taxonomic and possibly environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, P. J. (1989). Palaeoecology of Laetoli. Journal of Human Evolution, 18, 173–181.

    Article  Google Scholar 

  • Andrews, P. (2006). Taphonomic effects of faunal impoverishment and faunal mixing. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 572–589.

    Article  Google Scholar 

  • Andrews, P., & Bamford, M. (2008). Past and present vegetation ecology of Laetoli, Tanzania. Journal of Human Evolution, 54, 78–98.

    Article  Google Scholar 

  • Andrews, P., Bamford, M. K., Njau, E. F., & Leliyo, F. (2011). The ecology and biogeography of the Endulen-Laetoli area in northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 167–200). Dordrecht: Springer.

    Google Scholar 

  • Bamford, M. K. (2011). Fossil wood. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 217–233). Dordrecht: Springer.

    Google Scholar 

  • Behrensmeyer, A. K., & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic modes. In A. K. Beherensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, J. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 15–136). Chicago: University of Chicago Press.

    Google Scholar 

  • Bishop, L. C., Hill, A., & Kingston, J. D. (1999). Paleoecology of Suidae from the Tugen Hills, Baringo, Kenya. In P. Andrews & P. Banham (Eds.), Late Cenozoic environments and hominid evolution: A tribute to Bill Bishop (pp. 99–112). London: Geological Society of London.

    Google Scholar 

  • Bonnefille, R., & Riollet, G. (1987). Palynological spectra from the Upper Laetolil Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 52–61). Oxford: Clarendon.

    Google Scholar 

  • Boom, A., Marchant, R. A., Hooghiemstra, H., & Damste, J. S. S. (2002). CO2 and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allows reconstruction of ρCO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 29–45.

    Article  Google Scholar 

  • Carroll, R. L. (1988). Vertebrate paleontology and evolution. San Francisco: Freeman.

    Google Scholar 

  • Caswell, H., Reed, R., Stephenson, S. N., & Werner, P. A. (1973). Photosynthetic pathways and selective herbivory: A hypothesis. The American Naturalist, 107, 465–480.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., & Leakey, M. G. (1999). Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans. Oecologia, 120, 360–374.

    Google Scholar 

  • Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 45–470.

    Article  Google Scholar 

  • Cerling, T. E., Hart, J. A., & Hart, T. B. (2004). Stable isotope ecology in the Ituri Forest. Oecologia, 138, 5–12.

    Article  Google Scholar 

  • Chapman, G. P. (1996). The biology of grasses. Wallingford: CAB International.

    Google Scholar 

  • Clarke, S. J., Miller, G. H., Fogel, M. L., Chivas, A. R., & Murray-Wallace, C. V. (2006). The amino acid and stable isotope biogeochemistry of elephant bird (Aepyornis) eggshells from southern Madagascar. Quaternary Science Reviews, 25, 2343–2356.

    Article  Google Scholar 

  • Codron, D., Luty, J., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2005). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101, 245–248.

    Google Scholar 

  • Codron, S., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006). Inter- and Intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N, and %N. American Journal of Physical Anthropology, 129, 204–214.

    Article  Google Scholar 

  • Collatz, G. J., Berry, J. A., & Clark, J. S. (1998). Effects on climate and atmospheric CO2 partial pressure on the global distribution of C4 grassland: Past, present, and future. Oecologia, 114, 441–454.

    Article  Google Scholar 

  • Cooke, H. B. S. (1985). Plio-Pleistocene Suidae in relation to African hominid deposits. In Y. Coppens (Ed.), L’Environments des hominides au Plio-Pleistocene (pp. 101–117). Paris: Masson.

    Google Scholar 

  • Cooke, H. B. S., & Wilkinson, Q. F. (1978). Suidae and Tayassuidae. In V. J. Maglio & H. B. S. Cooke (Eds.), Evolution of African mammals (pp. 435–482). Cambridge: Harvard University Press.

    Google Scholar 

  • Deino, A. L. (2011). 40Ar/39Ar dating of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 77–97). Dordrecht: Springer.

    Google Scholar 

  • Demment, M. W., & van Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist, 125, 641–672.

    Article  Google Scholar 

  • Denys, C. (1987). Rodentia and Lagomorpha. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 118–170). Oxford: Clarendon.

    Google Scholar 

  • El-Zaatari, S., Grine, F. E., Teaford, M. F., & Smith, H. R. (2005). Molar microwear and dietary reconstruction of fossil Cercopithecoidea from the Plio-Pleistocene deposits of South Africa. Journal of Human Evolution, 49, 180–205.

    Article  Google Scholar 

  • Ferhi, A., & Letolle, R. (1977). Transpiration and evaporation as the principal factors in oxygen isotope variations of organic matter in land plants. Physiologie Végétale, 15, 363–370.

    Google Scholar 

  • Folinsbee, R. E., Fritz, P., Krouse, H. R., & Robblee, A. R. (1970). Carbon-13 and oxygen-18 in dinosaur, crocodile, and bird eggshells indicate environmental conditions. Nature, 168, 1353–1356.

    Google Scholar 

  • Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the Abrasion-Attrition wear gradient: A new method for reconstructing paleodiets. American Museum of Natural History Novitates, 3302, 1–36.

    Article  Google Scholar 

  • Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy, 81, 490–511.

    Article  Google Scholar 

  • Gentry, A. W. (2011). Bovidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 363–465). Dordrecht: Springer.

    Google Scholar 

  • Gonfiantini, G. R., Gratziu, S., & Tongiorgi, E. (1965). Oxygen isotope composition of water in leaves. In Isotopes and radiation in soil-plant nutrition studies (pp. 405–410). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Grocke, D. R., Bocherens, H., & Mariotti, A. (1997). Annual rainfall and nitrogen-isotope correlation in macropod collagen: Application as a paleoprecipitation indicator. Earth and Planetary Science Letters, 153, 279–285.

    Article  Google Scholar 

  • Harris, J. M. (1983). Family Rhinocerotidae. In J. M. Harris (Ed.), Koobi Fora research project – The fossil ungulates: Proboscidea, Perissodactyla, and Suidae (pp. 130–155). Oxford: Clarendon.

    Google Scholar 

  • Harris, J. M. (1987). Fossil Suidae from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 349–358). Oxford: Clarendon.

    Google Scholar 

  • Harrison, T. (2011). Laetoli revisited: Renewed palaeontological and geological investigations at localities on the Eyasi Plateau in northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 1–15). Dordrecht: Springer.

    Google Scholar 

  • Harrison, T., & Msuya, C. P. (2005). Fossil struthionid eggshells from Laetoli, Tanzania: Taxonomic and biostratigraphic significance. Journal of African Earth Sciences, 41, 303–315.

    Article  Google Scholar 

  • Hay, R. L. (1987). Geology of the Laetoli area. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 23–47). Oxford: Clarendon.

    Google Scholar 

  • Heaton, T. H. E. (1987). The 15 N/14 N ratio of plants in South Africa and Namibia: Relationship to climate and coastal/saline environment. Oecologia, 74, 236–246.

    Article  Google Scholar 

  • Hernesniemi, E., Giaourtsakis, I., Evans, A., & Fortelius, M. (2011). Rhinocerotidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 275–293). Dordrecht: Springer.

    Google Scholar 

  • Hobson, K. A. (1995). Reconstruction avian diets using stable-carbon and nitrogen isotope analysis of egg components: Patterns of isotopic fractionation and turnover. The Condor, 97, 752–762.

    Article  Google Scholar 

  • Jacques, L., Ogle, N., Moussa, I., Kalin, R., Vignaud, P., Brunet, M., & Bocherens, H. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology , 266 200–210.

    Article  Google Scholar 

  • Johnson, B. J. (1995) The stable isotope biogeochemistry of ostrich eggshell and its application to late Quaternary paleoenvironmental reconstructions in South Africa. Ph.D. dissertation. University of Colorado, Boulder.

    Google Scholar 

  • Johnson, B. J., Miller, G. H., Fogel, M. L., & Beaumont, P. B. (1997). The determination of late Quaternary paleoenvironments at Equus Cave, South Africa, using stable isotopes and amino acid racemization in ostrich eggshell. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 121–137.

    Article  Google Scholar 

  • Johnson, B. J., Fogel, M. L., & Miller, G. H. (1998). Stable isotopes in modern ostrich eggshell: A calibration for paleoenvironmental applications in semi-arid regions of southern Africa. Geochimica et Cosmochimica Acta, 62, 2451–2461.

    Article  Google Scholar 

  • Johnson, B. J., Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., & Chivas, A. R. (1999). 65,000 Years of vegetation change in central Australia and the Australian summer monsoon. Science, 284, 1150–1152.

    Article  Google Scholar 

  • Kaiser, T. M. (2011). Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 329–354). Dordrecht: Springer.

    Google Scholar 

  • Kingston, J. D. (1999). Environmental determinants in early hominid evolution: Issues and evidence from the Tugen Hills, Kenya. In P. Andrews & P. Banham (Eds.), Late Cenozoic environments and hominid evolution: A tribute to Bill Bishop (pp. 69–84). London: Geological Society.

    Google Scholar 

  • Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.

    Article  Google Scholar 

  • Kohn, M. J., & Cerling, T. E. (2002). Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry, 48, 455–488.

    Article  Google Scholar 

  • Kohn, M. J., Schoeninger, M. J., & Valley, J. W. (1996). Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta, 60, 3889–3896.

    Article  Google Scholar 

  • Kohn, M., Schoeninger, M., & Barker, W. (1999). Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 63, 2737–2747.

    Article  Google Scholar 

  • Kovarovic, K., & Andrews, P. (2007). A bovid postcranial ecomorphological survey of the Laetoli palaeoenvironment. Journal of Human Evolution, 52, 663–680.

    Article  Google Scholar 

  • Kovarovic, K., & Andrews, P. (2011). Environmental change within the Laetoli fossiliferous sequence: Vegetation catenas and bovid ecomorphology. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 367–380). Dordrecht: Springer.

    Google Scholar 

  • Kovarovic, K., Andrews, P., & Aiello, L. (2002). The palaeoecology of the Upper Ndolanya Beds at Laetoli, Tanzania. Journal of Human Evolution, 43, 395–418.

    Article  Google Scholar 

  • Kullmer, O. (1999). Evolution of African Plio-Pleistocene suids (Artiodactyla: Suidae) based on tooth pattern analysis. Kaupia, 9, 1–34.

    Google Scholar 

  • Leakey, M. D. (1987). Introduction. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 1–21). Oxford: Clarendon.

    Google Scholar 

  • Leakey, M. D., & Harris, J. M. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon.

    Google Scholar 

  • Lee-Thorp, J. A., Sealy, J. C., & van der Merwe, N. J. (1989a). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16, 585–599.

    Article  Google Scholar 

  • Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1989b). Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution, 18, 183–190.

    Article  Google Scholar 

  • Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27, 361–372.

    Article  Google Scholar 

  • Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences of the United States of America, 103, 11201–11205.

    Article  Google Scholar 

  • Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E., & Frost, S. R. (2008). Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geological Society of America Special Paper, 446, 215–234.

    Google Scholar 

  • Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P., & Chatri, K. (2008). Intra-tooth study of modern rhinoceros enamel δ18O: Is the difference between phosphate and carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 183–189.

    Article  Google Scholar 

  • McNaughton, S. J., & Georgiadis, N. J. (1986). Ecology of African grazing and browsing mammals. Annual Review of Ecology and Systematics, 17, 39–66.

    Article  Google Scholar 

  • Mikhailov, K. E. (1992). The microstructure of avian and dinosaurian eggshell: Phylogenetic implications. In: K. E. Campbell, (Ed.), Papers in avian paleontology honoring Pierce Brodkorb, Science Series (pp. 361–373). Los Angeles: Natural History Museum of Los Angeles County.

    Google Scholar 

  • Murphy, B. P., & Bowman, D. M. J. S. (2006). Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Functional Ecology, 20, 1062–1069.

    Article  Google Scholar 

  • Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.

    Article  Google Scholar 

  • Robinson, C. (2011). Giraffidae. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated Fauna, vol. 2, pp. 339–362). Dordrecht: Springer.

    Google Scholar 

  • Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 201–215). Dordrecht: Springer.

    Google Scholar 

  • Sage, R. F. (2004). The evolution of C4 photosynthesis. The New Phytologist, 161, 341–370.

    Article  Google Scholar 

  • Sauer, E. G. F. (1968). Calculations of struthious egg sizes from measurements of shell fragments and their correlation with phylogenetic aspects. Cimbebasia Series A, 1, 27–55.

    Google Scholar 

  • Sealy, J. C., van der Merwe, N. J., Thorp, J. A. L., & Lanham, J. L. (1987). Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing. Geochimica et Cosmochimica Acta, 51, 2707–2717.

    Article  Google Scholar 

  • Segalen, L., Renard, M., Pickford, M., Senut, B., Cojan, I., Callonnec, L. L., & Rognon, P. (2002). Environmental and climatic evolution of the Namib Desert since the Middle Miocene: The contribution of carbon isotope ratios in ratite eggshells. Comptes Rendus Geoscience, 334, 917–924.

    Article  Google Scholar 

  • Sinclair, A. R. E. (1978). Factors affecting the food supply and breeding season of resident birds and movements of Palaearctic migrants in a tropical African savannah. Ibis, 120, 480–497.

    Article  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (2006). Enamel diagenesis at South African australopith sites: Implications for paleoecological reconstruction with trace element. Geochimica et Cosmochimica Acta, 70, 1644–1654.

    Article  Google Scholar 

  • Sponheimer, M., Reed, K., & Lee-Thorp, J. A. (2001). Isotopic plaeoecology of Makapansgat limeworks Perissodactyla. South African Journal of Science, 97, 327–329.

    Google Scholar 

  • Sponheimer, M., Lee-Thorp, J. A., DeRuiter, D. J., Smith, J. M., van der Merwe, N. J., Reed, K., Grant, C. C., Ayliffe, L. K., Robinson, T. F., Heidelberg, C., & Marcus, W. (2003). Diets of southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84, 471–479.

    Article  Google Scholar 

  • Su, D. F. (2011). Large mammal evidence for the paleoenvironment of the Upper Laetolil and Upper Ndolanya Beds of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Geology, geochronology, paleoecology and paleoenvironment, vol. 1, pp. 381–392). Dordrecht: Springer.

    Google Scholar 

  • Su, D. F., & Harrison, T. (2007). The paleoecology of the Upper Laetolil Beds at Laetoli: A reconsideration of the large mammal evidence. In R. Bobe, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 279–313). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Su, D., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.

    Article  Google Scholar 

  • Tattersfield, P. (2011). Gastropoda. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (Fossil hominins and the associated fauna, vol. 2, pp. 567–587). Dordrecht: Springer.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Tieszen, L. L., Hein, D., Qvortrup, S. A., Troughtonn, J. H., & Imbama, S. K. (1979). Use of d13C values to determine vegetation selectivity in East African herbivores. Oecologia, 37, 351–359.

    Article  Google Scholar 

  • Tullett, S. G., & Board, R. G. (1977). Determinants of avian eggshell porosity. Journal of Zoology, 183, 203–211.

    Article  Google Scholar 

  • van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A., & Luyt, J. (2003). The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution, 44, 581–597.

    Article  Google Scholar 

  • Verdcourt, B. (1987). Mollusca from the Laetolil and Upper Ndolanya Beds. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 438–450). Oxford: Clarendon.

    Google Scholar 

  • Von Shirnding, Y., van der Merwe, N. J., & Vogel C. J. (1982). Influence of diet and age on carbon isotope ratios in ostrich eggshell. Archaeometry, 24, 3–20.

    Article  Google Scholar 

  • Walker, A. C. (1987). Fossil Galaginae from Laetoli. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 88–90). Oxford: Clarendon.

    Google Scholar 

  • White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., Boisserie, J. -R. Brunet, M., Delson, E., Frost, S. Garcia, N., Giaourtsakis, I. X., Haile-Selassie, Y., Howell, F. C., Wehmann, T., Likius, A., Pehlevan, C., Saegusa, H., Semprebon, G., Teaford, M., & Vrba, E. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 87–93.

    Google Scholar 

  • Zazzo, A., Bocherens, H., Brunet, M., Beauvilain, A., Billiou, D., Mackaye, H. T., Vignauch, P., & Mariotti, A. (2000). Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology, 26, 294–309.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Terry Harrison for the opportunity to ­participate in research conducted by the Eyasi Plateau Paleontological and Geological Project. The following project members contributed to the recovery of the fossil material analyzed here: P. Abwalo, P. Andrews, E. Baker, M. Bamford, R. Chami, S. Cooke, P. Ditchfield, M. Duru, C. Feibel, T.S. Harrison, T. Harrison, S. Hixson, K. Kovarovic, A. Kweka, M. Lilombero, M.L. Mbago, K. McNulty, C. Msuya, S. Odunga, C. Robinson, L. Rossouw, W.J. Sanders, L. Scott, D. Su, M. Tallman, and S. Worthington. I thank the Tanzania Commission for Science and Technology and the Unit of Antiquities in Dar es Salaam for permission to conduct research in Tanzania. Special thanks go to N. Kayombo (Director General), P. Msemwa (Director), Amandus Kweka and all of the curators and staff at the National Museum of Tanzania in Dar es Salaam and Arusha for their support and assistance. Fieldwork at Laetoli and isotopic analyses were supported by grants from National Geographic Society, the Leakey Foundation, and NSF (Grants BCS-9903434 and BCS-0309513). Matt Sponheimer and an anonymous reviewer provided comments and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Kingston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kingston, J.D. (2011). Stable Isotopic Analyses of Laetoli Fossil Herbivores. In: Harrison, T. (eds) Paleontology and Geology of Laetoli: Human Evolution in Context. Vertebrate Paleobiology and Paleoanthropology Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9956-3_15

Download citation

Publish with us

Policies and ethics