Skip to main content

Regional Climate Change and Fluctuations as Reflected in the Atmospheric Carbon Dioxide Concentration

  • Chapter
  • First Online:
Atmospheric Greenhouse Gases: The Hungarian Perspective

Abstract

This chapter analyzes the 15-year long atmospheric carbon dioxide (CO2) mixing ratio record measured at Hegyhátsál, Hungary, to reveal the effect of regional climate change and fluctuations. While the long-term trend and the temporal fluctuation of the growth rate faithfully follow the global tendencies, the shorter term variations show special features. The authors present the distorted seasonal cycle caused by the seasonality in the atmospheric vertical mixing and the tendentious change in its shape, which is attributed to the gradual warming and the prolongation of the growing season. The decreasing summer diurnal amplitude and the decreasing seasonal amplitude in the mixing ratio and the higher than average summer CO2 mixing ratio growth rate in the first period of the measurements (1994–2003) with increasing temperature and decreasing precipitation are explained as the consequences of the reduced activity of the biosphere in the influence area of the station and that of the reduced biomass under the increasingly unfavorable environmental conditions. The explanation is supported by the colocated tall tower surface–atmosphere CO2 exchange measurements and by the crop yield statistics of the dominantly agricultural region around the station.

Citation: Haszpra, L., Barcza, Z., 2010: Atmospheric trends and fluctuations Regional climate change and fluctuations as reflected in the atmospheric carbon dioxide concentration. In: Atmospheric Greenhouse Gases: The Hungarian Perspective (Ed.: Haszpra, L.), pp. 49–62.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Barcza Z, Kern A, Haszpra L, Kljun N (2009) Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric For Meteorol 149:795–807

    Article  Google Scholar 

  • Beljaars A, Jakob C, Morcrette J-J (2001) New physics parameters in the MARS archive. ECMWF Newsl 90:17–21

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  Google Scholar 

  • Ciais P, Bousquet P, Freibauer A, Naegler T (2007) Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Glob Biogeochem Cycles 21:GB2014

    Article  Google Scholar 

  • Davis KJ, Bakwin PS, Yi C, Berger BW, Zhao C, Teclaw RM, Isebrands JG (2003) The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Glob Change Biol 9:1278–1293

    Article  Google Scholar 

  • Denning AS, Randall DA, Collatz GJ, Sellers PJ (1996) Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part II.: Simulated CO2 concentrations. Tellus 48B:543–567

    Google Scholar 

  • EC-JRC/PBL (European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency) (2009) Emission Database for Global Atmospheric Research (EDGAR), release version 4.0. http://edgar.jrc.ec.europa.eu

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA, pp 129–234

    Google Scholar 

  • GLOBALVIEW-CO2 (2009) Cooperative atmospheric data integration project – carbon dioxide. CD-ROM, NOAA ESRL, Boulder, CO. Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW

    Google Scholar 

  • Gloor M, Bakwin P, Hurst D, Lock L, Draxler R, Tans P (2001) What is the concentration footprint of a tall tower? J Geophys Res 106D:17831–17840

    Article  Google Scholar 

  • Haszpra L, Barcza Z (2010) Climate variability as reflected in a regional atmospheric CO2 record. Tellus, 62B (in print) DOI: 10.1111/j.1600-0889.2010.00505.x

    Google Scholar 

  • Haszpra L, Barcza Z, Davis KJ, Tarczay K (2005) Long term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. Agric For Meteorol 132:58–77

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  Google Scholar 

  • Larson VE, Volkmer H (2008) An idealized model of the one-dimensional carbon dioxide rectifier effect. Tellus 60B:525–536

    Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim Change 87:405–419

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  Google Scholar 

  • Murayama S, Yamamoto S, Saigusa N, Kondo H, Takamura C (2005) Statistical analyses of inter-annual variations in the vertical profile of atmospheric CO2 mixing ratio and carbon budget in a cool-temperate deciduous forest in Japan. Agric For Meteorol 134:17–26

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21:GB3018

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Anping Ch, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Reichstein M, Beer C (2008) Soil respiration across scales: the importance of a model-data integration framework for data interpretation. J Plant Nutr Soil Sci 171:344–354

    Article  Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogée J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grünwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana J-F, Sanz M-J, Vesala T, Zhao M (2007) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob Change Biol 13:634–651

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, Norwell, MA

    Google Scholar 

  • Thum T, Aalto T, Laurila T, Aurela M, Hatakka J, Lindroth A, Vesala T (2009) Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus 61B:701–717

    Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Article  Google Scholar 

  • Varga-Haszonits Z (2004) Az éghajlati változékonyság és a természetes periódusok (Climatic variability and natural periods). “AGRO-21” Füzetek 37:23–32

    Google Scholar 

  • Vermeulen A (ed) (2007) CHIOTTO Final report. ECN-E--07-052. Available at http://www.ecn.nl/docs/library/report/2007/e07052.pdf

  • Zimov SA, Davidov SP, Zimova GM, Davidova AI, Chapin FSI, Chapin MC, Reynolds JF (1999) Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284:1973–1976

    Article  Google Scholar 

Download references

Acknowledgments

During the years, the Hungarian atmospheric greenhouse gas monitoring received significant financial support from the US–Hungarian Scientific and Technological Joint Fund (J.F. 162, J.F. 504), the European Commission R&D Framework Programmes (AEROCARB – EVK2-CT-1999-00013, CHIOTTO – EVK2-CT-2002-00163, CarboEurope-IP – GOCE-CT-2003-505572, IMECC – RII3 026188), the European Commission’s INTERREG IIIB CADSES program (Carbon-Pro – 5D038), as well as the Hungarian funding organizations (Hungarian Scientific Research Fund – T7282, T042941, CK77550; Hungarian Ministry for Environment – 027739-01/2001, K0441482001, K-36-02-00010H).

In addition to original material, this chapter is essentially an updated version of Haszpra and Barcza (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Haszpra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Haszpra, L., Barcza, Z. (2011). Regional Climate Change and Fluctuations as Reflected in the Atmospheric Carbon Dioxide Concentration. In: Haszpra, L. (eds) Atmospheric Greenhouse Gases: The Hungarian Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9950-1_4

Download citation

Publish with us

Policies and ethics