Skip to main content

Model-Based Biospheric Greenhouse Gas Balance of Hungary

Abstract

We present the first comprehensive overview about the state-of-the-art estimates of the Hungarian biospheric greenhouse gas (GHG) balance. Biogeochemical models, statistical time series, and literature data are used together to describe grassland, forest, and arable land specific GHG fluxes. The estimates are aggregated to the country level to approximate the net biospheric greenhouse gas balance for the first time. The results suggest that the overall biospheric GHG balance of Hungary is negative (−13.8 Mt CO2-equivalent year-1), which means net GHG release to the atmosphere. According to this finding, the biosphere does not mitigate anthropogenic GHG emission in the country. More research is needed to constrain the estimates, and to provide reliable uncertainty estimates to the fluxes and stocks. We try to point out important research priorities that can help us to ­better understand the biogeochemical processes of the biosphere in Hungary, and to provide mitigation opportunities for biospheric GHG emission.

Keywords

Citation:

Barcza, Z., Bondeau, A., Churkina, G., Ciais, Ph., Czóbel, Sz., Gelybó, Gy., Grosz, B., Haszpra, L., Hidy, D., Horváth, L., Machon, A., Pásztor, L., Somogyi, Z., Van Oost, K., 2010: Modeling of biosphere–atmosphere exchange of greenhouse gases — Model-based biospheric greenhouse gas balance of Hungary. In: Atmospheric Greenhouse Gases: The Hungarian Perspective (Ed.: Haszpra, L.),The Hungarian Perspective (Ed.: Haszpra, L.), pp. 295–330.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AGROTOPO (1994) Spatial Soil Information System. RISSAC HAS, Budapest. http://www.mta-taki.hu/en/departments/gis-lab/databases

  • Anthoni PM, Freibauer A, Kolle O, Schulze E-D (2004) Winter wheat carbon exchange in Thuringia, Germany. Agric For Meteorol 121:55–67

    Article  Google Scholar 

  • Barcza Z, Haszpra L, Somogyi Z, Hidy D, Lovas K, Churkina G, Horváth L (2009) Estimation of the biospheric carbon dioxide balance of Hungary using the BIOME-BGC model. Időjárás – Q J Hung Meteorol Serv 113:203–219

    Google Scholar 

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13:679–706. doi:10.1111/j.1365-2486.2006.01305.x

    Article  Google Scholar 

  • Büttner G, Feranec J, Jaffrain G (2002) Corine Land Cover Update 2000. Technical Report 89 (European Environment Agency, 2002). http://www.eea.europa.eu/publications/technical_report_2002_89Accessed Dec 2007

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2005) Reconciling carbon-cycle concepts, terminology and methods. Ecosystems 9:1041–1050. doi:10.1007/s10021-005-0105-7

    Article  Google Scholar 

  • Churkina G, Tenhunen J, Thornton P, Falge EM, Elbers JA, Erhard M, Grunwald T, Kowalski AS, Sprinz D (2003) Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6:168–184

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  Google Scholar 

  • Ciais P, Bousquet P, Freibauer A, Naegler T (2007) Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Global Biogeochem Cycles 21:GB2014. doi:10.1029/2006GB002741

    Article  Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens I, Bondeau A, Dechow R, Leip A, Smith Pc, Beer C, van der Werf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze ED, CARBOEUROPE Synthesis Team (2010) The European carbon balance. Part 2: croplands. Global Change Biol 16:1409–1428. doi:10.1111/j.1365-2486.2009.02055.x

    Article  Google Scholar 

  • CIAT (2004) Hole-filled Seamless SRTM Data V1. International Centre for Tropical Agriculture, Cali Palmira

    Google Scholar 

  • Cienciala E, Tatarinov FA (2006) Application of BIOME-BGC model to managed forests. 2. Comparison with long-term observations of stand production for major tree species. For Ecol Manage 237:252–266

    Article  Google Scholar 

  • Czóbel S, Szirmai O, Nagy J, Balogh J, Ürmös Z, Péli ER, Tuba Z (2008) Effects of irrigation on the community composition, and carbon uptake in Pannonian loess grassland monoliths. Community Ecol 9:91–96

    Article  Google Scholar 

  • Dechow R, Freibauer A (2010) Modelling nitrous oxide emissions of agricultural soils with fuzzy logic based inference schemes. Ecol Model (unpublished data)

    Google Scholar 

  • Fader M, Rost S, Müller C, Bondeau A, Gerten D (2010) Virtual water content of temperate cereals and maize: present and potential future patterns. J Hydrol 384(3–4):218–231

    Article  Google Scholar 

  • FAO (2010) Food and Agriculture Organization of the United Nations. TradeSTAT database. http://faostat.fao.org/. Accessed Jan 2010

  • Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  Google Scholar 

  • Führer E, Mátyás Cs (2005) A klímaváltozás hatása a hazai erdők szénmegkötő képességére és stabilitására (The impact of climate change on the carbon sequestration capacity and stability of Hungarian forests). Magy Tud 50:837–841

    Google Scholar 

  • Gervois S, Ciais P, de Noblet-Ducoudré N, Brisson N, Vuichard N, Viovy N (2008) Carbon and water balance of European croplands throughout the 20th century. Glob Biogeochem Cycles 22:GB2022. doi:10.1029/2007GB003018

    Article  Google Scholar 

  • Goudriaan J, Groot JJR, Uithol PWJ (2001) Productivity of agro-ecosystems. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, CA

    Google Scholar 

  • Hungarian Central Statistical Office (2010). http://statinfo.ksh.hu/Statinfo/themeSelector.jsp?&lang=en. Accessed Feb 2010

  • IPCC (1996) In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change, Contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY

    Google Scholar 

  • Jacinthe PA, Lal R, Owens B, Hothem DL (2004) Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res 77:111–123

    Article  Google Scholar 

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann H, Nabuurs G-J, Smith P, Valentini R, Schulze E-D (2005) The carbon budget of terrestrial ecosystems at country-scale – a European case study. Biogeosciences 2:15–26

    Article  Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671

    Article  Google Scholar 

  • Kern A, Barcza Z, Bartholy J, Pongrácz R, Timár G, Ferencz Cs (2008) Analysis of MODIS NDVI time series for Hungary in 2007: detecting the phenological impacts of the summer heatwave. Geophysical Research Abstracts, 10: EGU2008-A-05083, 2008. SRef-ID: 1607-7962/gra/EGU2008-A-05083

    Google Scholar 

  • Kreybig L (1937) The survey, analytical and mapping method of the Hungarian Royal Institute of Geology (in Hungarian and German). M Kir Földtani Intézet Évkönyve 31:147–244

    Google Scholar 

  • Luyssaert S, Ciais P, Piao SL, Schulze E-D, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA and members of the CARBOEUROPE-IP synthesis team (2009) The European carbon balance: part 3: Forests. Global Change Biol 16:1429-1450. doi: 10.1111/j.1365-2486.2009.02056.x

  • Marek M, Zverinová Z, Janous D (2006). Level 4 dataset CEIP_EC_L4_CZBK1_2006_v02 in CarboeuropeIP Ecosystem Component Database. http://gaia.agraria.unitus.it/databaseAccessed Oct 2007

  • Mészáros E, Molnár Á (1992) Energy production, economy and greenhouse gas emissions in Hungary. Időjárás 96:14–21

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Pásztor L, Szabó J, Bakacsi Z (2010) Digital processing and upgrading of legacy data collected during the 1:25 000 scale Kreybig soil survey. Acta Geodaetica Geophys Hung 45:127–136

    Article  Google Scholar 

  • Pietsch SA, Hasenauer H, Thornton PE (2005) BGC-model parameters for tree species growing in central European forests. For Ecol Manage 211:264–295

    Article  Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Rödenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J, Gash JH, the CarboEurope Team (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850. doi:10.1038/ngeo686

    Article  Google Scholar 

  • Smith P, Goulding KWT, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252

    Article  Google Scholar 

  • Somogyi Z (2007) A Kyotoi Jegyzőkönyv és az erdők (The Kyoto protocol and the forests). Erdészeti Lapok 142:152–154

    Google Scholar 

  • Somogyi Z (2008) A hazai erdők üvegház hatású gáz leltára az IPCC módszertana szerint (Greenhouse gas inventory of forests in Hungary using the IPCC methodology). Erdészeti Kutatások 92:145–162

    Google Scholar 

  • Szabó J, Dombos M, Pásztor L, Bakacsi Zs, László P (2008) Practical problems of soil state assessment; experiments in the Bodrogköz sample area. Tájökológiai Lapok 6:27–41

    Google Scholar 

  • Szentimrey T, Bihari Z, Szalai S (2005) Meteorological interpolation based on surface homogenized data basis (MISH). Geophysical Research Abstracts, 7: 07310. SRef-ID: 1607-7962/gra/EGU05-A-07310

    Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    Article  Google Scholar 

  • Van Oost K, Cerdan O, Quine TA (2009) Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surf Process Land 12:1625–1634. doi:10.1002/esp. 1852

    Article  Google Scholar 

  • Vetter M, Churkina G, Jung M, Reichstein M, Zaehle S, Bondeau A, Chen Y, Ciais P, Feser F, Freibauer A, Geyer R, Jones C, Papale D, Tenhunen J, Tomelleri E, Trusilova K, Viovy N, Heimann M (2008) Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences 5:561–583

    Article  Google Scholar 

  • Vuichard N, Ciais P, Viovy N, Calanca P, Soussana JF (2007) Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 2. Simulations at the continental level. Global Biogeochem Cycles 21:GB1005. doi:10.1029/2005GB002612

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176. doi:10.1016/j.rse.2004.12.011

    Article  Google Scholar 

Download references

Acknowledgments

Biome-BGC version 4.1.1 was provided by the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana. NTSG assumes no responsibility for the proper use of Biome-BGC by others. We thank Márta Birkás (Institute of Crop Production, Szent István University, Hungary) for the invaluable help regarding the country-specific allocation data and the information about the fate of agricultural residues in Hungary. We acknowledge the support from the Hungarian National Scientific Research Fund (OTKA T23811, T42941, OTKA-NKTH CK77550), the Hungarian Ministry of Economy and Transport (GVOP-3.2.1.-2004-04-0107/3.0, GVOP-AKF-3.1.1.-2004-05-0358/3.0), the INTERREG IIIB CADSES program (5D038), and the European Commission’s 5th and 6th R&D Framework Programmes (EVK2-CT-1999-00013, EVK2-CT-2002-00163, GOCE-CT-2003-505572, GOCE-037005, IMECC, Project No. 026188). The authors highly appreciate the help and advice of M. Zhao (Numerical Terradynamic Simulation Group, University of Montana, Missoula, USA), N. Vuichard (Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif sur Yvette, France), I. Janssens (University of Antwerpen, Antwerpen, Belgium), T. Major (Hungarian Central Statistical Office, Budapest, Hungary), T. Szentimrey, R. Hodossyné Rétfalvi, B. Birszki (Hungarian Meteorological Service, Budapest, Hungary), J. Szabó (Research Institute for Soil Sciences and Agricultural Chemistry, Budapest, Hungary), K. Trusilova, E. Tomelleri, M. Jung (Max Planck Institute for Biogeochemistry, Jena, Germany), Z. Nagy, K. Pintér, Z. Tuba, Z. Németh (Szent István University, Gödöllő, Hungary), A. Kern (Hungarian Academy of Sciences, Budapest, Hungary), B. Balázs (Eötvös Loránd University, Budapest, Hungary), S. Schaphoff (Potsdam Institute for Climate Impact Research, Potsdam, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Barcza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barcza, Z. et al. (2011). Model-Based Biospheric Greenhouse Gas Balance of Hungary. In: Haszpra, L. (eds) Atmospheric Greenhouse Gases: The Hungarian Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9950-1_13

Download citation

Publish with us

Policies and ethics