Skip to main content

Approaches to Building Chemical Cells/Chells: Examples of Relevant Mechanistic ‘Couples’

  • Chapter
  • First Online:
The Minimal Cell

Abstract

Operationally functional couples of Container (C), Metabolism (M) and Information (I) and their potential translation into protocellular models are explored through illustration by select examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachmann PA, Luisi PL, Lang J (1991) Self-replicating reverse micelles. Chimia 45:266–268

    CAS  Google Scholar 

  • Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357:57–59

    Article  CAS  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725

    Article  CAS  PubMed  Google Scholar 

  • Bean HD, Anet FAL, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63

    Article  CAS  PubMed  Google Scholar 

  • Bedau MA, Krasnogor N, Davis BG, Cronin L, Deamer D, Hanczyc M, Harel D, Lancet D, Packard N, Rasmussen S, Schroeder S, Stano P, Whitaker B, Valencia A Critical assessment of artificial chemical cells: milestones in the quest for artificial life (in prep)

    Google Scholar 

  • Bedau MA, Mccaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ikegami T, Kaneko K, Ray TS (2000) Open problems in artificial life. Artif Life 6:363–376

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368:46–49

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    Article  CAS  Google Scholar 

  • Butlerow A (1861) Bildung einer zuckerartigen Substanz durch Synthese. Annalen 120:295–298

    Google Scholar 

  • Cevc G (ed) (1993) Phospholipids handbook. Marcel Decker, New York

    Google Scholar 

  • Chakrabarti AC, Breaker RR, Joyce GF, Deamer DW (1994) Production of RNA by a polymerase protein encapsulated within phospholipid-vesicles. J Mol Evol 39:555–559

    Article  CAS  PubMed  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article  CAS  PubMed  Google Scholar 

  • Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    Article  CAS  PubMed  Google Scholar 

  • Cleland CE, Chyba CF (2002) Defining ‘Life’. Orig Life Evol Biosph 32:387–393

    Article  CAS  PubMed  Google Scholar 

  • Cronin L, Krasnogor N, Davis BG, Alexander C, Robertson N, Steinke JHG, Schroeder SLM, Khlobystov AN, Cooper G, Gardner PM, Siepmann P, Whitaker BJ, Marsh D (2006) The imitation game-a computational chemical approach to recognizing life. Nat Biotechnol 24:1203–1206

    Article  CAS  PubMed  Google Scholar 

  • Deamer D (2005) A giant step towards artificial life? Trends Biotechnol 23:336–338

    Article  CAS  PubMed  Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophy Acta 11:459–463

    Article  CAS  Google Scholar 

  • Ganti T (2003) The principles of life. Oxford University Press, New York

    Book  Google Scholar 

  • Gardner PM, Winzer K, Davis BG (2009) Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat Chem 1:377–383

    Article  CAS  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA III, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Nat Acad Sci U S A 103:425–430

    Article  CAS  Google Scholar 

  • Gridnev ID, Serafimov JM, Quiney H, Brown JM (2003) Reflections on spontaneous asymmetric synthesis by amplifying autocatalysis. Org Biomol Chem 1:3811–3819

    Article  CAS  PubMed  Google Scholar 

  • Harel D (2005) A Turing-like test for biological modeling. Nat Biotechnol 23:495–496

    Article  CAS  PubMed  Google Scholar 

  • Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T (2005) Mirror-symmetry breaking in the Soai reaction: A kinetic understanding. Proc Nat Acad Sci U S A 102:13743–13748

    Article  CAS  Google Scholar 

  • Issac R, Ham Y-W, Chmielewski J (2001) The design of self-replicating helical peptides. Curr Opin Struct Biol 11:458–463

    Article  CAS  Google Scholar 

  • Kay S, David HL, Jose AM, Michael V, Ghadiri MR (1998) Dynamic error correction in autocatalytic peptide networks. Angew Chem Int Ed 37:126–128

    Article  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA – auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528

    Article  CAS  PubMed  Google Scholar 

  • Li T, Nicolaou KC (1994) Chemical self-replication of palindromic duplex DNA. Nature 369:218–221

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL (1996) Self-reproduction of micelles and vesicles: models for the mechanisms of life from the perspective of compartmented chemistry. Adv Chem Phys 92:425–438

    Article  CAS  Google Scholar 

  • Luisi PL (2006) The emergence of life. from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mansy SS (2009) Model protocells from single-chain lipids. Int J Mol Sci 10:835–843

    Article  CAS  PubMed  Google Scholar 

  • Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    Article  CAS  PubMed  Google Scholar 

  • Mavelli F, Luisi PL (1996) Autopoietic self-reproducing vesicles: a simplified kinetic model. J Phys Chem 100:16600–16607

    Article  CAS  Google Scholar 

  • Murtas G, Kuruma Y, Bianchini P, Diaspro A, Luisi PL (2007) Protein synthesis in liposomes with a minimal set of enzymes. Biochem Biophys Res Commun 363:12–17

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A (2005) Toward an artificial cell based on gene expression in vesicles. Phys Biol 2

    Google Scholar 

  • Nomura SIM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Gene expression within cell-sized lipid vesicles. ChemBioChem 4:1172–1175

    CAS  Google Scholar 

  • Oberholzer T, Albrizio M, Luisi PL (1995a) Polymerase chain reaction in liposomes. Chem Biol 2:677–682

    Article  CAS  PubMed  Google Scholar 

  • Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744

    Article  CAS  Google Scholar 

  • Oberholzer T, Nierhaus KH, Luisi PL (1999) Protein expression in liposomes. Biochem Biophys Res Commun 261:238–241

    Article  CAS  PubMed  Google Scholar 

  • Oberholzer T, Wick R, Luisi PL, Biebricher CK (1995b) Enzymic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem Biophys Res Commun 207:250–257

    Article  CAS  PubMed  Google Scholar 

  • Oparin AI (1953) The origin of life. Dover, New York

    Google Scholar 

  • Pohorille A, Deamer D (2002) Artificial cells: prospects for biotechnology. Trends Biotechnol 20:123–128

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2008) Protocells: bridging nonliving and living matter. The MIT Press, Cambridge

    Google Scholar 

  • Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Transitions from nonliving to living matter. Science 303:963–965

    Article  CAS  PubMed  Google Scholar 

  • Saghatelian A, Yokobayashi Y, Soltani K, Ghadiri MR (2001) A chiroselective peptide replicator. Nature 409:797–801

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Sugimori T, Hyuga H (2006) Stochastic approach to enantiomeric excess amplification and chiral symmetry breaking. Los Alamos National Laboratory, Preprint Archive, Condensed Matter, pp 1–24, arXiv:cond-mat/0612385

    Google Scholar 

  • Segre D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Yamamoto J, Matsumoto N, Yonekubo S, Osanai S, Soai K (1998) Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis: the first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J Am Chem Soc 120:12157–12158

    Article  CAS  Google Scholar 

  • Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J Am Chem Soc 121:11235–11236

    Article  CAS  Google Scholar 

  • Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    Article  CAS  Google Scholar 

  • Sole RV, Munteanu A, Rodriguez-Caso C, Macia J (2007) Synthetic protocell biology: from reproduction to computation. Philos Trans Royal Soc B Biol Sci 362:1727–1739

    Article  CAS  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  CAS  PubMed  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  Google Scholar 

  • Wagler PF, Tangen U, Maeke T, Chemnitz S, Juenger M, Mccaskill JS (2004) Molecular systems on-chip (MSoC) steps forward for programmable biosystems. Proc SPIE Int Soc Opt Eng 5389:298–305

    CAS  Google Scholar 

  • Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL (1994a) Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7547

    Article  CAS  Google Scholar 

  • Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994b) Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116:11649–11654

    Article  CAS  Google Scholar 

  • Walker B, Krishnasastry M, Zorn L, Kasianowicz J, Bayley H (1992) Functional expression of the alpha-hemolysin of Staphylococcus aureus in intact escherichia-coli and in cell lysates – ­deletion of 5 c-terminal amino-acids selectively impairs hemolytic-activity. J Biol Chem 267:10902–10909

    CAS  PubMed  Google Scholar 

  • Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now – gone to lunch. Curr Opin Microbiol 5:216–222

    Article  CAS  Google Scholar 

  • Wittung P, Nielsen PE, Buchardt O, Egholm M, Norden B (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368:561–563

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP, Shima Y, Urabe I, Yomo T (2001) Synthesis of functional protein in liposome. J Biosci Bioeng 92:590–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof Luigi Luisi for his help and advice during key aspects of the development of our thought. We would like to thank the participants of the 1st workshop on the Critical Assessment of Artificial Cellularity in Venice 2005 and, in particular, Mark Bedau, Natalio Krasnogor, Leroy Cronin, David Deamer, Martin Hanczyc, David Harel, Doron Lancet, Norman Packard, Steen Rasmussen, Sven Schroeder, Pasquale Stano, Ben Whitaker, Alfonso Valencia and the members of the 2004 EPSRC “Chemical Craftwork” Sandpit and the CHELLnet network (which emerged from it) for participation in wonderfully stimulating discussions. Special thanks go to the other members of the vesiCHELL grouping, Leroy Cronin, Natalio Krasnogor and Cameron Alexander. We acknowledge the EPSRC for funding our work in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin G. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Gardner, P.M., Davis, B.G. (2011). Approaches to Building Chemical Cells/Chells: Examples of Relevant Mechanistic ‘Couples’. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_9

Download citation

Publish with us

Policies and ethics