Skip to main content

On the Minimal Requirements for the Emergence of Cellular Crowding

  • Chapter
  • First Online:
The Minimal Cell
  • 1026 Accesses

Abstract

A plausible route to highly concentrated cellular compartments is sketched. The main driving force comes from the selective advantage of a higher macromolecular content. The evolution from a diluted to a crowded state is described with a minimal model of growing bacteria. Additional simplifications to the model, aimed to mimic ancestral protocellular growth and division, lead to a model still rendering a selective advantage to increased macromolecular concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerenza L, Graña M (2006) On the origins of a crowded cytoplasm. J Mol Evol 63:583–590

    Article  CAS  PubMed  Google Scholar 

  • Bray D (1998) Signaling complexes: biophysical constraints on intracellular communication. Annu Rev Biophys Biomol Struct 27:59–75

    Article  CAS  PubMed  Google Scholar 

  • Bremer H, Dennis PP (1996) Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhart FC et al (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Burg MB (2000) Macromolecular crowding as a cell volume sensor. Cell Physiol Biochem 10:251–256

    Article  CAS  PubMed  Google Scholar 

  • Cayley S, Lewis BA, Guttman HJ, Jr Record MT (1991) Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol 222:281–300

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1984) Properties and metabolism of the aqueous cytoplasm and its bounderies. Am J Physiol 246:R133–R151

    CAS  PubMed  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  CAS  PubMed  Google Scholar 

  • Donachie WD, Robinson AC (1987) Cell division: parameter values and the process. In: Neidhart FC et al (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Dyson F (1985) Origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  • Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Article  CAS  PubMed  Google Scholar 

  • Garner MM, Burg MB (1994) Macromolecular crowding and confinement in cells exposed to hypertonicity. Am J Physiol 266:C877–C892

    CAS  PubMed  Google Scholar 

  • Goobes R, Kahana N, Cohen O, Minsky A (2003) Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance. Biochemistry 42:2431–2440

    Article  CAS  PubMed  Google Scholar 

  • Graña M, Acerenza L (2001) A model combining cell physiology and population genetics to explain Escherichia coli laboratory evolution. BMC Evol Biol 1:12

    Article  PubMed  Google Scholar 

  • Guigas G, Kalla C, Weiss M (2007) The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett 581:5094–5098

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649:127–139

    CAS  PubMed  Google Scholar 

  • Helmstetter C (1996) Timing of synthetic activities in the cell cycle. In: Neidhart FC et al (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A (2000) Ten commandments: lessons from the enzymology of DNA replication. J Bacteriol 182:3613–3618

    Article  CAS  PubMed  Google Scholar 

  • Kozer N, Kuttner YY, Haran G, Schreiber G (2007) Protein-protein association in polymer solutions: from dilute to semidilute to concentrated. Biophys J 92:2139–2149

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC (1971) Enzyme reactions in polymer media. Eur J Biochem 21:498–506

    Article  CAS  PubMed  Google Scholar 

  • Lazcano A, Miller SL (1999) On the origin of metabolic pathways. J Mol Evol 49:424–431

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE (2009) Available at http://myxo.css.msu.edu/ecoli/summdata.html

    Google Scholar 

  • Lenski RE, Mongold JA (2000) Cell size, shape and fitness in evolving populations of bacteria. In: Brown JH, West GB (eds) Scaling in biology. Oxford University Press, London

    Google Scholar 

  • Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ, Schmidt TM (1998) Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie Van Leeuwenhoek 73:35–47

    Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10, 000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A 91:6808–6814

    Article  CAS  PubMed  Google Scholar 

  • Løbner-Olesen A, Skarstad K, Hansen FG, von Meyenburg K, Boye E (1989) The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57:881–889

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL (2002) Towards the engineering of minimal living cells. Anat Rec 268:208–214

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Oberholzer T, Lazcano A (2002) The notion of a DNA minimal cell: a general discourse and some guidelines for an experimental approach. Helvetica Chimica Acta 85:1759–1777

    Article  CAS  Google Scholar 

  • Lutkenhaus J, Mukerjee A (1996) Cell division. In: Neidhart FC et al (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Minton AP (1981) Excluded volume as a determinant of macromolecular structure reactivity. Biopolymers 20:2093–2120

    Article  CAS  Google Scholar 

  • Minton AP (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55:119–140

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  • Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 89:10504–10506

    Article  CAS  PubMed  Google Scholar 

  • Mongold JA, Lenski RE (1996) Experimental rejection of a nonadaptive explanation for increased cell size in Escherichia coli. J Bacteriol 178:5333–5334

    CAS  PubMed  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’connell JD, Mirrielees J, Ellington AD, Marcotte EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA 106:10147–10152

    Article  CAS  PubMed  Google Scholar 

  • Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744

    Article  CAS  Google Scholar 

  • Pohorille A (2009) Early ancestors of existing cells. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells. The MIT Press, Cambridge, MA

    Google Scholar 

  • Rashevsky N (1960) Mathematical biophysics: physico-mathematical foundations of biology, vol 1, 3rd edn. Dover Publications, Mineloa, NY

    Google Scholar 

  • Jr Record MT, Courtenay ES, Cayley S, Guttman HJ (1998) Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci 23:190–194

    Article  CAS  PubMed  Google Scholar 

  • Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV (1998) Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sci USA 95:10547–10552

    Article  CAS  PubMed  Google Scholar 

  • Schaechter M, Maaloe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19:592–606

    CAS  PubMed  Google Scholar 

  • Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97:4112–4117

    Article  CAS  PubMed  Google Scholar 

  • Sole RV, Macia J, Fellermann H, Munteanu A, Sardanyes J, Valverde S (2009) Models of protocell replication. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells. The MIT Press, Cambridge, MA

    Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124

    Article  CAS  PubMed  Google Scholar 

  • Srere PA, Ovadi J (1990) Enzyme-enzyme interactions and their metabolic role. FEBS Lett 268:360–364

    Article  CAS  PubMed  Google Scholar 

  • Stano P, Murtas G, Luisi PL (2009) Semisynthetic minimal cells: new advances and perspectives. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells. The MIT Press, Cambridge, MA

    Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  CAS  PubMed  Google Scholar 

  • van den Berg B, Wain R, Dobson CM, Ellis RJ (2000) Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 19:3870–3875

    Article  PubMed  Google Scholar 

  • Wachtershauser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  CAS  PubMed  Google Scholar 

  • Wachtershauser G (2000) Origin of life. Life as we don’t know it. Science 289:1307–1308

    Article  CAS  PubMed  Google Scholar 

  • Walter H, Brooks DE (1995) Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett 361:135–139

    Article  CAS  PubMed  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Zepik HH, Blochliger E, Luisi PL (2001) A chemical model of homeostasis. Angew Chem Int Ed Engl 40:199–202

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Murphy LD (1996) Macromolecular crowding and the mandatory condensation of DNA in bacteria. FEBS Lett 390:245–248

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.A. acknowledges support from Programa de Desarrollo de las Ciencias Básicas (PEDECIBA, Uruguay). Financial support from Agencia Nacional de Investigación e Innovación (ANII, Uruguay) is acknowledged from both authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Acerenza or Martín Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Acerenza, L., Graña, M. (2011). On the Minimal Requirements for the Emergence of Cellular Crowding. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_3

Download citation

Publish with us

Policies and ethics