Skip to main content

Impacts of Up-Coming Deep-Sea Mining

  • Chapter
  • First Online:
  • 373 Accesses

Abstract

Deep-sea mining has been a subject of interest for several groups and countries for over four decades, due to its potential for the economical recovery of large reserves of minerals that would provide an alternative resource of strategic metals for industrial development. A deep-sea mining operation will offer a variety of challenges, owing to deep-sea mineral occurrences (1 to 6 km (0.6 – 3.7 mi) of water depths), extreme physical and chemical conditions (high pressure, low temperature) and unknown environmental settings. Owing to the growing concerns about the environmental impacts of deep-sea mining, multi-disciplinary environmental studies (oceanography, geology, geochemistry, ecology and geotechnical engineering) have been progressive in many countries. The historical approaches in the world are summarized. The important roles of environmental impact experiment and quantified environmental assessment for deep-sea mining are also introduced. A pioneer deep-sea mining project is under progress and the commercial mining is scheduled to start in 2012’2013. Because the metal contents of mined ore from the deep-sea mining are different with those from on-land mining, the commercial mining may cause some economic impacts on metal markets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   699.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amann, H. (1985). Development of ocean mining in the Red Sea. Marine Mining, 5, 103–116.

    Google Scholar 

  • Andrews, B. V., Flipse, J. E., & Brown, F. C. (1983). Economic viability of a four-metal pioneer deep ocean mining venture. Washington: U.S. Department of Commerce, PB84-122563.

    Google Scholar 

  • Barnett, B., & Suzuki, T. (1997). The use of kringing to estimate resedimentation in the JET experiment. Proceedings, international symposium on environmental studies for deep-sea mining, Tokyo: Metal Mining Agency of Japan, 143–151.

    Google Scholar 

  • Barnett, B., & Yamauchi, H. (1995). Deep sea sediment resuspension system used for the Japan Deep-Sea impact experiment. Proceedings, 1st ISOPE Ocean mining symposium, Tsukuba, 175–179.

    Google Scholar 

  • Bath, A. R. (1989). Deep sea mining technology: Recent developments and future projects. Proceedings, 21st offshore technical conference, Paper No. 5998.

    Google Scholar 

  • Bendel, V., Fouquet, Y., Auzende, J. M., Lagabrielle, Y., Grimaud, D., & Urabe, T. (1993). The White Lady Hydrothermal field, North Fiji Back-arc Basin, Southwest Pacific. Economic Geology, 88, 2237–2249.

    Article  Google Scholar 

  • Bluhm, H. (1999). Holothurians as indicators for recolonisation process in environmental assessments. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 177–184.

    Google Scholar 

  • Brockett, T., & Richards, C. Z. (1994). Deep-sea mining simulator for environmental impact studies, Sea Technology, 7–81, 77–82.

    Google Scholar 

  • Burns, R. E., Erickson, B. H., Lavelle, J. W., & Ozturgut, E. (1980). Observation and measurements during the monitoring of deep ocean manganese nodule mining tests in the North Pacific, March–May 1978, NOAA Technical Memorandum ERL MESA-47.

    Google Scholar 

  • Charles, C., Herrouin, G., Mauviel, F., & Bernard, J. (1990). Views on future nodule technologies based on IFREMER-GEMONOD studies. Materials and Society, 14(3–4), 299–326.

    Google Scholar 

  • Cronan, D. S. (1980). Underwater minerals. London: Academic.

    Google Scholar 

  • Desa, E. (1997). Initial results of India’s environmental impact assessment of nodule mining. Proceedings, international symposium for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 49–63.

    Google Scholar 

  • Doi, T., Nakata, K., Kubota, M., & Aoki, S. (1999). Environmental study of the deep-sea mining of manganese nodules in the Northeastern Tropical Pacific – Modeling the sediment-laden negative buoyant flow. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 163–168.

    Google Scholar 

  • Fenchel, T., & Bernard, C. (1995). Mats of colourless sulphur bacteria. I. Major microbial processes. Marine Ecology Progress Series, 128, 161–170.

    Article  Google Scholar 

  • Fouquet, Y., Von Stackelberg, U., Charlou, J. L., Donval, J. P., Erzinger, J., Foucher, J. P., et al. (1991). Hydrothermal activity and metallogenesis in the Lau Back-ark Basin. Nature, 349, 778–781.

    Article  Google Scholar 

  • Fukushima, T. (1995). Overview “Japan deep-sea impact experiment = JET”. Proceedings, 1st ISOPE ocean mining symposium, Tsukuba, 47–53.

    Google Scholar 

  • Halbach, P., Nakamura, K., Wahsner, M., Lange, J., Kaselitz, L., Hansen, R.-D., et al. (1989). Probable modern analogue of Kuroko-type massive sulfide deposit in the Okinawa Trough back-arc basin. Nature, 338, 496–499.

    Article  Google Scholar 

  • Heibon-sha. (1981). Geological handbook (pp. 1269–1270). Tokyo: Heibon-sha (in Japanese).

    Google Scholar 

  • Herrouin, G., Lenoble, J., Charles, C., Mauviel, F., Bernard, J., & Taine, B. (1987). A manganese nodule industrial venture would be profitable – Summary of a 4-year study in France. Proceedings, 21st Offshore Technical Conference, Paper No. 5997.

    Google Scholar 

  • Hillman, C. T., & Gosling, B. B. (1985). Mining deep ocean manganese nodules: Description and economic analysis of a potential venture. Washington: U.S. Bureau of Mines, IC 9015.

    Google Scholar 

  • Hong, S., & Kim, K.-H. (1999). Research and development of deep seabed mining technologies for Polymetallic nodules in Korea. Proceedings, proposed techniques for deep seabed mining of polymetallic nodules, Kingston, International. Seabed Authority, 261–283.

    Google Scholar 

  • Iizasa, K., Fiske, R. S., Ishizuka, O., Yuasa, M., Hashimoto, J., Ishibashi, J., et al. (1999). A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science, 283, 975–977.

    Article  Google Scholar 

  • Ingole, B. S., Ansari, Z. A., Matondkar, S. G. P., & Rodrigues, N. (1999). Immediate response of meio and macrobenthos to disturbance caused by bethnic disturber. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 191–197.

    Google Scholar 

  • Kajitani, Y. (1997). The Japanese environmental research for manganese nodule mining. Proceedings, 2nd ISOPE ocean mining symposium, Seoul, 131–138.

    Google Scholar 

  • Kaufman, R., Latimer, J. P., & Tolefson, D. C. (1985). The design and operation of a Pacific Ocean deep-ocean mining test ship: R/V Deepsea Miner II. Proceedings, 17th offshore technical conference. Paper No. 4901.

    Google Scholar 

  • Kia, P., & Lasark, J. (1999). Overview of Papua New Guinea offshore resources. Workshop Report. Offshore Mineral Policy Workshop, Madang, PNG, SOPAC Miscellaneous Report 323, pp. 39–46.

    Google Scholar 

  • Kotlinski, R., & Tkatchenko, G. (1997). Preliminary results of IOM environmental research. Proceedings, international symposium on environmental studies for deep-sea mining, Tokyo: Metal Mining Agency of Japan, 35–44.

    Google Scholar 

  • Mero, J. L. (1965). The mineral resources of the sea. Elsevier Oceanography Series.

    Google Scholar 

  • Muthunayagam, A. E., & Das, S. K. (1999). Indian polymetallic nodule program. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 1–5.

    Google Scholar 

  • Nakata, K., Kubota, M., Aoki, S., & Taguchi, K. (1997). Dispersion of resuspended sediments by ocean mining activity – modeling study. Proceedings, international symposium on environmental studies for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 169–186.

    Google Scholar 

  • Nawab, Z. (2001). Atlantis II Deep: A future deep sea mining site. Proceedings, proposed technologies for mining deep-seabed polymetallic nodules, Kingston, International Seabed Authority, 301–313.

    Google Scholar 

  • Ohkubo, S., & Yamazaki, T (2003). Summary of “environmental impact research on marine ecosystem for deep-sea mining” Conducted by Metal Mining Agency of Japan. Proceedings, 5th ISOPE ocean mining symposium, Tsukuba, 200–207.

    Google Scholar 

  • Ozturgut, E., Anderson, G. C., Burns, R. E., Lavelle, J. W., & Swift, S. A. (1978). Deep ocean mining of manganese hodlues in the North Pacific: Pre-mining environmental conditions and anticipated mining effects, NOAA Technical Memorandum ERL MESA-33.

    Google Scholar 

  • Ozturgut, E., Lavelle, J. W., Steffin, O., & Swift, S. A. (1980). Environmental investigation during Manganese nodule mining tests in the North Equatorial Pacific, in November 1978, NOAA Technical Memorandum ERL MESA-48.

    Google Scholar 

  • Radziejewska, T. (1997). Immediate responses of benthic meio- and megafauna to disturbance caused by polymetallic nodule miner simulator. Proceedings, international symposium, environmental studies for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 223–236.

    Google Scholar 

  • Radziejewska, T., & Modlitba, I. (1999). Vertical distribution of meiobenthos in relation to geotechnical properties of deep-sea sediment in the IOM pioneer area. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 126–130.

    Google Scholar 

  • Radziejewska, T., Szamałek, K., & Kotlinski, R. (2003). Marine environment in the IOM Area (Clarion-Clipperton Region, Subtropical Pacific): Current knowledge and future needs. Proceedings, 5th ISOPE ocean mining symposium, Tsukuba, 188–193.

    Google Scholar 

  • Schriever, G. (1995). DISCOL – Disturbance and recolonization of a manganese nodule area of the Southeastern Pacific. Proceedings, 1st ISOPE ocean mining symposium, Tsukuba, 163–166.

    Google Scholar 

  • Schriever, G., Ahnert, A., Borowski, C., & Thiel, H. (1997). Results of the large scale deep-sea impact study DISCOL during eight years of Investigation. Proceedings, International symposium, environmental studies for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 197–208.

    Google Scholar 

  • Sharma, R., Nath, B. N., Valsangkar, A. B., Khadge, N. H., Parthiban, G., Sankar, S. J., et al. (2003). Monitoring effects of simulated disturbance at INDEX Site: Current status and future activities. Proceedings, 5th ISOPE ocean mining symposium, Tsukuba, 208–215.

    Google Scholar 

  • Shirayama, Y., & Fukushima, T. (1997a). Benthic organism distribution in the Japanese deep sea mining claim area. Proceedings, international symposium, environmental studies for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 311–316.

    Google Scholar 

  • Shirayama, Y., & Fukushima, T. (1997b). Responses of a Meiobenthos community to rapid resedimentation. Proceedings, international symnposium. environmental studies for deep-sea mining, Tokyo, Metal Mining Agency of Japan, 187–196.

    Google Scholar 

  • Shirayama, Y. (1999). Biological results of JET Project: An overview. Proceedings, 3rd ISOPE ocean mining symposium, Goa, 185–190.

    Google Scholar 

  • Soreide, F., Lund, T., & Markussen J. M. (2001). Deep ocean mining reconsidered: A study of the manganese nodule deposits in Cook Island. Proceedings, 4th ISOPE ocean mining symposium, szczecin, 88–93.

    Google Scholar 

  • Spiess, F. N., Hessler, R., Wilson, G., & Weydert, M. (1987). Environmental effects of deep sea dredging. San Diego, CA: Scripps Institute of Oceanography, SIO-Ref 87-5.

    Google Scholar 

  • Takeuchi, R., Yamazaki, T., Monoe, D., Oomi, T., Nakata, K., & Fukushima, T. (2007). Preliminary modeling of chemosynthetic ecosystem around methane seepage. Proceedings, 7th ISOPE ocean mining symposium, Lisbon, 128–134.

    Google Scholar 

  • Thiel, H., Angel, M. V., Foel, E. J., Rice, A. L., & Schriever, G. (1998). Marine science and technology – Environmental risks from large-scale ecological research: A desk study. Contract No. MAS2-CT94-0086, Office for Official Publications of the European Communities, Luxembourg, 210p.

    Google Scholar 

  • Thiel, H., & Forschungsverbund Tiefsee-Umweltsschutz. (1995). The German environmental impact research for manganese nodule mining in the SE Pacific Ocean. Proceedings, 1st ISOPE ocean mining symposium, Tsukuba, 39–45.

    Google Scholar 

  • Trueblood, D. D., Ozturgut, E., Pilipchuk, M., & Gloumov, I. F. (1997). The ecological impacts of the Joint U.S.-Russian benthic impact experiment. Proceedings, 2nd ISOPE ocean mining symposium, Seoul, 139–145.

    Google Scholar 

  • Welling, C. G. (1981). An advanced design deep sea mining system. Proceedings, 13th offshore technical conference. Paper No. 4094.

    Google Scholar 

  • Yamada, H., & Yamazaki, T. (1998). Japan’s ocean test of the nodule mining system. Proceedings, 8th international offshore and polar engineering conference, Montreal, 13–19.

    Google Scholar 

  • Yamazaki, T. (2007). Economic validation analyses of Japan’s proposed nodule, cruist and Kuroko-type SMS Mining in 2006. Proceedings oceans 2007, Vancouver.

    Google Scholar 

  • Yamazaki, T., & Kajitani, Y. (1999). Deep-sea environment and impact to it. Proceedings, 9th international offshore and polar engineering conference, Brest, 374–381.

    Google Scholar 

  • Yamazaki, T., Kajitani, Y., Barnett, B., & Suzuki, T. (1997). Development of image analytical technique for resedimentation induced by nodule mining. Proceedings, 2nd ISOPE ocean mining symposium, Seoul, 159–164.

    Google Scholar 

  • Yamazaki, T., Kuboki, E., & Matsui, T. (2001). DIETS: A new bethnic impact experiment on a seamount. Proceedings, 4th ISOPE ocean mining symposium, Szczecin, 69–76.

    Google Scholar 

  • Yamazaki, T., Kuboki, E., & Uehara, D. (2001). Resedimentation analysis from seafloor photographs. Proceedings 11th international offshore and polar engineering conference, Stavanger, 528–535.

    Google Scholar 

  • Yamazaki, T., & Park, S.-H. (2005). Economic validation analyses of Japan’s nodule, crust, and Kuroko-type SMS mining in 2004. Proceedings 6th ISOPE ocean mining symposium, Changsha, 65–70.

    Google Scholar 

  • Yamazaki, T., Park, S.-H., Shimada, S., Iizasa, K., & Shiokawa, S. (2003). A case study of mining seafloor massive sulfides in Japanese EEZ. Proceedings 5th ISOPE ocean mining symposium, Tsukuba, 63–70.

    Google Scholar 

  • Yamazaki, T., Park, S.-H., Shimada, S., & Yamamoto, T. (2002). Development of technical and economical examination method for cobalt-rich manganese crusts. Proceedings, 12th international offshore and polar engineering conference, Kita-Kyushu, 454–461.

    Google Scholar 

  • Yamazaki, T., & Sharma, R. (2001). Estimation of sediment properties during benthic impact experiments, Marine Georesources and Geotechniques, 19(4), 269–289.

    Article  Google Scholar 

  • Yamazaki, T., Tsurusaki, K., & Handa, K. (1991). Discharge from manganese nodule mining system. Proceedings, 1st international offshore and polar engineering conference, Edinburgh, 440–446.

    Google Scholar 

  • Yang, N., & Wang, M. (1997). New era for China manganese nodules mining: Summary of last five years’ research activities and prospective, Proceedings, 2nd ISOPE ocean mining symposium, Seoul, 8–11.

    Google Scholar 

  • Zielke, W., Jankowski, J. A., Sündermann, J., & Segschneider, J. (1995). Numerical modeling of sediment transport caused by deep-sea mining. Proceedings, 1st ISOPE ocean mining symposium, Tsukuba, 157–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Yamazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yamazaki, T. (2011). Impacts of Up-Coming Deep-Sea Mining. In: Brunn, S. (eds) Engineering Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9920-4_17

Download citation

Publish with us

Policies and ethics