Skip to main content

Why are there so many kinds of planktonic consumers? The answer lies in the allometric diet breadth

  • Santa rosalia 50 years on
  • Chapter
  • 590 Accesses

Part of the book series: Developments in Hydrobiology 213 ((DIHY,volume 213))

Abstract

In an attempt to explain ‘Why are there so many kinds of animals?’ G.E. Hutchinson highlighted the food web context to suggest that diversity of primary producers should allow consumer richness to be maintained as a result of their adaptive foraging. Co-existence of consumers is then made possible when species differ in body size and thus only a minor diet overlap occurs. All these ideas are still major topics in ecological research and some have been re-examined in order to provide mechanistic explanations of species richness versus connectance relationships in food web structure. The effect of body size as a determinant of diet, jointly with the assumption that individuals are adapted to switch their diet in order to maximise energy gain, have been combined in recent years to develop the Allometric Diet Breadth Model (ADBM). This model, successful for plankton communities, enables us to determine the specific resource–consumer links and then evaluate the diet breadth and test whether the diet overlaps. Here, we apply the ADBM to infer the feeding linkages within a freshwater planktonic community of a Spanish oligo-mesotrophic lake and three spatial partitions of it. ADBM treats phytoplankton species and bacteria as resources and each consumer species (ciliates, rotifers and crustaceans) as both consumers and resources. We applied ADBM to water-column integrated- and single-layered plankton communities to test the importance of the diet on structuring the plankton. If a given pair of species that co-occur in the whole vertical community overlap their diet more than when they occur in the three layers separately, this means that they will never co-exist and are hence overdispersed (segregated). Not all species pairs that have a weak diet overlap when belonging to the whole water-column community co-exist in water-layered communities. Hence, the richer, whole water-column community would then have lower diet overlap than spatially segregated communities. Therefore, the hypothesis of diet breadth of Hutchinson (The American Naturalist 93: 145–159, 1959) explains community structure throughout the water column, and its deviations may be forced abiotically.

Guest editors: L. Naselli-Flores & G. Rossetti / Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Allesina, S., 2009. Predicting trophic relations in ecological networks: a test of the Allometric Diet Breadth Model. Cornell University Library. http://arxiv.org/pdf/0911.202.

  • Álvarez-Cobelas, M., S. Cirujano, C. Rojo, M. A. Rodrigo, E. Piña, J. C. Rodríguez & E. Montero, 2006. Effects of changing rainfall on the limnology of a Mediterranean, flowthrough-seepage chain of lakes. International Review of Hydrobiology 91: 466–482.

    Article  Google Scholar 

  • Barnett, A. J. & B. E. Beisner, 2007. Zooplankton biodiversity and lake tropic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1688.

    Article  PubMed  Google Scholar 

  • Baroni-Urbani, C., 1980. A statistical table for the degree of coexistence between two species. Oecologia 44: 287–289.

    Article  Google Scholar 

  • Becker, V., V. L. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology 53: 952–963.

    Article  Google Scholar 

  • Beckerman, A. P., O. L. Petchey & P. H. Warren, 2006. Foraging biology predicts food web complexity. Proceedings of the National Academy of Sciences 103: 13745–13749.

    Article  CAS  Google Scholar 

  • Bell, G., 2001. Neutral macroecology. Science 293: 2413–2418.

    Article  CAS  PubMed  Google Scholar 

  • Bell, R., G. M. Ahlgren & I. Ahlgren, 1983. Estimating bacterioplankton production by measuring (3H)-thymidine incorporation in a eutrophic Swedish lake. Applied and Environmental Microbiology 45: 1709–1721.

    CAS  PubMed  Google Scholar 

  • Bernard, C. & F. Rassoulzadegan, 1990. Bacteria or microflagellates as a major food source for marine ciliates – possible implications for the microzooplankton. Marine Ecology-Progress Series 64: 147–155.

    Article  Google Scholar 

  • Bolker, B. M., 2008. Ecological Models and Data in R. Princeton University Press, Princenton.

    Google Scholar 

  • Bort, S., C. Rojo, M. A. Rodrigo & N. Maidana, 2005. El fitoplancton de las lagunas de Ruidera (Parque Natural, Ciudad Real). Limnetica 24: 33–46.

    Google Scholar 

  • Carrillo, P., J. M. Medina-Sánchez, M. Villar-Argáiz, J. A. Delgado-Molina & F. Bullejos, 2006. Complex interactions in microbial food webs: stoichiometric and functional approaches. Limnetica 25: 189–204.

    Google Scholar 

  • Carrillo, P., J. A. Delgado-Molina, J. M. Medina-Sánchez, F. J. Bullejos & M. Villar-Argáiz, 2008. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Global Change Biology 14: 423–439.

    Article  Google Scholar 

  • Corrêa, E., P. De Marco & M. Petrere, 2009. Exploring community assembly trough an individual-based model for trophic interactions. Ecological Modelling 220: 23–39.

    Article  Google Scholar 

  • Cózar, A., C. M. García, J. A. Gálvez & F. Echevarría, 2008. Structuring pelagic trophic networks from the biomass size spectrum. Ecological Modelling 215: 314–324.

    Article  Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.

    Article  Google Scholar 

  • Durbin, E. G. & A. G. Durbin, 1992. Effects of temperaure and food abundance on grazing and short-term weight change in the marine copepod Acartia hudsonica. Limnology and Oceanography 37: 361–378.

    Article  Google Scholar 

  • Finlay, B. J. & G. F. Esteban, 2009. Oxygen sensing drives predictable migrations in a microbial community. Environmental Microbiology 11: 81–85.

    Article  PubMed  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles of the feeding behaviour of the marine plantonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.

    Article  Google Scholar 

  • Fukami, T. & W. G. Lee, 2006. Alternative stable states, trait dispersion and ecological restoration. Oikos 113: 353–356.

    Article  Google Scholar 

  • Hansen, J., P. K. Bjørnsen & B. W. Hansen, 1997. Zooplankton grazing and growth: scaling within the 2–2000 μm body size range. Limnology and Oceanography 42: 687–704.

    Article  Google Scholar 

  • Helmus, M. R., K. Savage, M. W. Diebel, J. T. Maxted & A. R. Ives, 2007. Separating the determinants of phylogenetic community structure. Ecology Letters 10: 917–925.

    Article  PubMed  Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.

    Article  Google Scholar 

  • Kumar, R. & J. S. Hwang, 2008. Ontogenetic shifts in the ability of the Cladoceran Moina macrocopa STRAUS and Ceriodaphnia cornuta SARS to utilize ciliated protists as food source. International Review of Hydrobiology 93: 284–296.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCen, 1958. The inverted method of estimating algal numbers and the statistical basis of estimations and counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Marañón, E., 2009. Phytoplankton size structure. In Steele, J. H., K. K. Turekian & S. A. Thorpe (eds), Encyclopedia of Ocean Sciences, 2nd ed. Academic Press, Oxford: 4249–4256.

    Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Production in Freshwater. Blackwell Scientific Publications, Oxford: 228–265.

    Google Scholar 

  • Meláo, M. G. G. & O. Rocha, 2004. Life history, biomass and production of two planktonic cyclopoid copepods in a shallow subtropical reservoir. Journal of Plankton Research 26: 909–923.

    Article  Google Scholar 

  • Pagano, M., 2008. Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) and rotifer (Brachionus calyciflorus) on natural phytoplankton: effect of phytoplankton size-structure. Journal of Plankton Research 30: 401–414.

    Article  Google Scholar 

  • Petchey, O. L., A. P. Beckerman, J. O. Riede & P. H. Warren, 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences 105: 4191–4196.

    Article  CAS  Google Scholar 

  • Philippova, T. G. & A. L. Pstonov, 1988. The effect of food quantity on feeding and metabolic expenditure in Cladocera. International Revue der Gesamten Hydrobiologie 73: 601–615.

    Article  Google Scholar 

  • Pianka, E. R., 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53–74.

    Article  Google Scholar 

  • Piña-Ochoa, E., M. Álvarez-Cobelas, M. A. Rodrigo, C. Rojo & A. Delgado, 2006. Nitrogen sedimentation in a lake affected by massive nitrogen inputs: autochthonous versus allochthonous effects. Freshwater Biology 51: 2228–2239.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf-Luhe.

    Google Scholar 

  • Ringelberg, J. & E. Van Gool, 2003. On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research. Hydrobiologia 491: 85–90.

    Article  Google Scholar 

  • Rojo, C., M. A. Rodrigo & M. Barón-Rodríguez, 2007. Dynamics of the planktonic food web in Colgada Lake (Lagunas de Ruidera Natural Park). Limnetica 26: 251–264.

    Google Scholar 

  • Rojo, C., M. A. Rodrigo, G. Salazar & M. Álvarez-Cobelas, 2008. Nitrate uptake rates in freshwater plankton: the effect of food web structure. Marine and Freshwater Research 59: 717–725.

    Article  CAS  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 34–62.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Schoenberg, S. A., 1989. Effects of algal concentration, bacterial size and water chemistry on the ingestion of natural bacteria by Cladocerans. Journal of Lankton Research 11: 1273–1295.

    Article  Google Scholar 

  • Tittel, J., V. Bissinger, B. Zippel, U. Gaedke, E. Bell, A. Lorke & N. Kamjunke, 2003. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proceedings of the National Academy of Sciences 100: 12776–12781.

    Article  CAS  Google Scholar 

  • Verity, P. G., 1991. Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnology and Oceanography 36: 729–750.

    Article  Google Scholar 

  • Walz, N., 1995. Rotifer population in planktonic communities: energetics and life history strategies. Experientia 51: 437–453.

    Article  CAS  Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in Lake Constance. Journal of Plankton Research 10: 1179–1188.

    Article  Google Scholar 

  • Woodward, G. & A. G. Hildrew, 2002. Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology 71: 1063–1074.

    Article  Google Scholar 

  • Wootton, J. T. & M. Emmerson, 2005. Measurement of interaction strength in nature. Annual Review of Ecology, Evolution and Systematics 36: 419–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Rojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rojo, C., Salazar, G. (2010). Why are there so many kinds of planktonic consumers? The answer lies in the allometric diet breadth. In: Naselli-Flores, L., Rossetti, G. (eds) Fifty years after the ‘‘Homage to Santa Rosalia’’: Old and new paradigms on biodiversity in aquatic ecosystems. Developments in Hydrobiology 213, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9908-2_8

Download citation

Publish with us

Policies and ethics