Skip to main content

Part of the book series: Developments in Hydrobiology 213 ((DIHY,volume 213))

Abstract

G. Evelyn Hutchinson proposed that external control by climate limits the fundamental productivity and the possible diversity of ecological communities. These climatic drivers are currently changing as a result of human activity, which may herald a shift in the influence of climate on global ecosystems. Long-term records reveal a reduction in ice cover on northern lakes over the last several centuries. Hence, we explore whether inter-annual climatic variability, represented by ice cover, influences the productivity and diversity of zooplankton communities in long-term datasets for five lakes in Northern Wisconsin. We used a multilevel modeling approach to test three predictions: (1) density will increase, (2) diversity will increase, and (3) community composition will be altered. We found an inverse relationship between ice-off date and annual zooplankton density. Daphnia density, for example, was inversely related to ice-off date, with 10-fold variability across the gradient of ice-off dates in Northern Wisconsin. In contrast, we did not observe a consistent shift in diversity or community structure. Thus, from ice cover records of northern lakes we found support for Hutchinson’s idea that external climatic forces may regulate aquatic productivity; however, the response was numeric and we did not find evidence that lakes moved closer to maximum diversity on an inter-annual scale.

Guest editors: L. Naselli-Flores & G. Rossetti / Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.

    Article  Google Scholar 

  • Arai, T., 2000. The hydro-climatological significance of long-term ice records of Lake Suwa, Japan. Verhandlungen Internationale Vereinigung für Limnologie 27: 2757–2760.

    Google Scholar 

  • Balayla, D., T. L. Lauridsen, M. Sondergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646: 159–172.

    Article  CAS  Google Scholar 

  • Blenckner, T., K. Pettersson & J. Padisak, 2002. Lake plankton as a tracer to discover climate signals. Verhandlungen Internationale Vereinigung für Limnologie 28: 1324–1327.

    Google Scholar 

  • Gelman, A. & J. Hill, 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gerten, D. & R. Adrian, 2002. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. The Scientific World Journal 2: 586–606.

    Google Scholar 

  • Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Google Scholar 

  • Hutchinson, G. E., 1959. Why are there so many kinds of animals? The American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Jensen, O. P., B. J. Benson, J. J. Magnuson, V. M. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnology and Oceanography 52: 2013–2026.

    Google Scholar 

  • Kratz, T. K., B. P. Hayden, B. J. Benson & W. Y. B. Chang, 2000. Patterns in the interannual variability of lake freeze and thaw dates. Verhandlungen Internationale Vereinigung für Limnologie 27: 2796–2799.

    Google Scholar 

  • Kreft, I. & J. De Leeuw, 1998. Introducing Multilevel Modeling. Sage, London.

    Google Scholar 

  • Lunn, D. J., A. Thomas, N. Best & D. Spiegelhalter, 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10: 325–337.

    Article  Google Scholar 

  • MacArthur, R. H., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 35: 533–536.

    Article  Google Scholar 

  • Magnuson, J., B. J. Benson & T. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin. U.S.A. Freshwater Biology 23: 145–149.

    Article  Google Scholar 

  • Magnuson, J., D. Robertson, B. J. Benson, R. Wynne, D. Livingstone, T. Arai, R. Assel, R. Barry, V. Card, E. Kuusisto, N. Granin, T. Prowse, K. Stewart & V. Vuglinski, 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289: 1743–1746.

    Article  CAS  PubMed  Google Scholar 

  • Magnuson, J. J., B. J. Benson, O. P. Jensen, T. B. Clark, V. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2005. Persistence of coherence of ice-off dates for inland lakes across the Laurentian Great Lakes region. Verhandlungen Internationale Vereinigung für Limnologie 29: 521–527.

    Google Scholar 

  • Magnuson, J. J., T. K. Kratz & B. J. Benson, 2006. Long-Term Dynamics of Lakes in the Landscape: Long-Term Ecological Research on North Temperate Lakes. Oxford University Press, New York.

    Google Scholar 

  • Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.

    Google Scholar 

  • Moran, P. A. P., 1953. The statistical analysis of the Canadian lynx cycle. II Synchronization and meteorology. Australian Journal of Zoology 1: 291–298.

    Article  Google Scholar 

  • NTLLTERP, 2009a. Ice Duration – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.

  • NTLLTERP, 2009b. Plankton – Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.

  • NTLLTERP, 2009c. Zooplankton Procedures: Trout Lake Area, North Temperate Lakes Long Term Ecological Research program (http://lter.limnology.wisc.edu) [accessed 01 Sept 2009], NSF, NTL LTER Lead PI, Center for Limnology, University of Wisconsin-Madison.

  • Odum, E. P., 1953. Fundamentals of ecology. W.B. Saunders Co, Philadelphia, PA.

    Google Scholar 

  • Pielou, E. C., 1975. Ecological Diversity. Wiley, New York.

    Google Scholar 

  • Regier, H. A. & J. D. Meisner, 1990. Anticipated effects of climate change on fresh-water fishes and their habitat. Fisheries 15: 10–15.

    Article  Google Scholar 

  • Reynolds, C., 1984. Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rusak, J. A. & P. K. Montz, 2009. Sampling Requirements and the Implications of Reduced Sampling Effort for the Estimation of Annual Zooplankton Population and Community Dynamics in North Temperate Lakes. Limnology and Oceanography: Methods 7: 535–544.

    Google Scholar 

  • Rusak, J. A., N. D. Yan, K. M. Somers, K. L. Cottingham, F. Micheli, S. R. Carpenter, T. M. Frost, M. J. Paterson & D. J. McQueen, 2002. Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes. Limnology and Oceanography 47: 613–625.

    Article  Google Scholar 

  • Rusak, J. A., N. D. Yan & K. M. Somers, 2008. Regional climatic drivers of synchronous zooplankton dynamics in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 878–889.

    Article  Google Scholar 

  • Ruuhijärvi, J., M. Rask, S. Vesala, A. Westermark, M. Olin, J. Keskitalo & A. Lehtovaara, 2010. Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646: 145–158.

    Article  Google Scholar 

  • Schindler, D. E., D. E. Rogers, M. D. Scheuerell & C. A. Abrey, 2005. Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86: 198–209.

    Article  Google Scholar 

  • Sommer, U., Z. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Straile, D. & R. Adrian, 2000. The North Atlantic Oscillation and plankton dynamics in two European lakes–two variations on a general theme. Global Change Biology 6: 663–670.

    Article  Google Scholar 

  • Straile, D., K. John & H. Rossknecht, 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48: 1432–1438.

    Article  CAS  Google Scholar 

  • Weyhenmeyer, G. A., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.

    Article  Google Scholar 

  • Weyhenmeyer, G., R. Adrian, U. Gaedke, D. M. Livingstone & S. C. Maberly, 2002. Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation. Verhandlungen Internationale Vereinigung für Limnologie 28: 1436–1439.

    Google Scholar 

  • Winder, M. & D. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Wynne, R. H., 2001. Statistical Modelling of Lake Ice Phenology: Issues and Implications. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (FRG).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Preston .

Editor information

Editors and Affiliations

Additional information

In fond memory of Professor Stanley I. Dodson.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Preston, N.D., Rusak, J.A. (2010). Homage to Hutchinson: does inter-annual climate variability affect zooplankton density and diversity?. In: Naselli-Flores, L., Rossetti, G. (eds) Fifty years after the ‘‘Homage to Santa Rosalia’’: Old and new paradigms on biodiversity in aquatic ecosystems. Developments in Hydrobiology 213, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9908-2_13

Download citation

Publish with us

Policies and ethics