Skip to main content

Methodology for Quantitative Analysis of 3-D Nuclear Architecture

  • Chapter
  • First Online:
Advances in Nuclear Architecture

Abstract

In the past 20 years cell biologists have studied the cell nucleus extensively, aided by advances in cell imaging technology and microscopy. Consequently, the volume of image data of the cell nucleus – and the compartments it contains – is growing rapidly. The spatial organisation of these nuclear compartments is thought to be fundamentally associated with nuclear function. However, the rules that oversee nuclear architecture remain unclear and controversial. As a result, there is an increasing need to replace qualitative visual assessment of microscope images with quantitative and automated methods. Such tools can substantially reduce manual labour and more importantly remove subjective bias. Quantitative methods can also increase the accuracy, sensitivity and reproducibility of data analysis. In this paper, we describe image processing and analysis methodology for the investigation of nuclear architecture, and the application of these methods to quantitatively explore the promyelocytic leukaemia (PML) nuclear bodies (NBs). PML NBs are linked with numerous nuclear functions including transcription and protein degradation. However, we know very little about the three-dimensional (3-D) architecture of PML NBs in relation to each other or within the general volume of the nucleus. Finally, we emphasise methods for the analysis of replicate images (of a given nuclear compartment across different cell nuclei) in order to aggregate information about nuclear architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  • Batty E, Jensen K, Freemont PS (2009) PML nuclear bodies and their spatial relationships in the mammalian cell nucleus. Front Biosci 14:1182–1196

    Article  PubMed  CAS  Google Scholar 

  • Bell ML, Grunwald GK (2004) Mixed models for the analysis of replicated spatial point ­patterns. Biostatistics 5(4):633–648

    Article  PubMed  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic ­leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  Google Scholar 

  • Borden KL (2002) Pondering the Promyelocytic Leukemia Protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22(15):5259–5269

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Dailey M, Marrs G, Satz J, Waite M (1999) Concepts in imaging and microscopy exploring biological structure and function with confocal microscopy. Biol Bull 197(2):115–122

    Article  PubMed  CAS  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    Google Scholar 

  • Diggle SJ, Eglen PJ, Troy JB (2006) Modelling the bivariate spatial distribution of amacrine cells. Case Stud Spat Point Process Model 185:215–233

    Article  Google Scholar 

  • Everett RD (2001) DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20(49):7266–7273

    Article  PubMed  CAS  Google Scholar 

  • Fleischer F, Beil M, Kazda M, Schmidt V (2006) Analysis of spatial point patterns in microscopic and macroscopic biological image data. Case Stud Spat Point Process Model 185:235–260

    Article  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2006) Statistical parametric mapping: the analysis of functional brain images. Academic, London

    Google Scholar 

  • Glasbey CA, Horgan GW (1995) Image analysis for the biological sciences. Wiley, New York

    Google Scholar 

  • Hell SW, Wichmann W (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  PubMed  CAS  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, New York

    Google Scholar 

  • Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    Article  PubMed  CAS  Google Scholar 

  • Kozubek M (2006) Automated analysis of multi-dimensional biomedical image data acquired using optical microscopy. Proceedings of the 6th international conference on stereology, Spatial statistics and stochastic geometry, pp 465–476

    Google Scholar 

  • Kozubek M, Kozubek S, Lukásová E, Marecková A, Bártová E, Skalníková M, Jergová A (1999) High-resolution cytometry of FISH dots in interphase cell nuclei. Cytometry 36:279–293

    Article  PubMed  CAS  Google Scholar 

  • Lachmanovich R, Shvartsman DE, Malka Y, Botvin C, Henis YI, Weiss AM (2003) Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc 212(2):122–131

    Article  PubMed  CAS  Google Scholar 

  • LaSalle JM, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272:725–728

    Article  PubMed  CAS  Google Scholar 

  • Li G, Liu T, Tarokh A, Nie J, Guo L, Mara A, Holley S, Wong ST (2007) 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol 8(1):401

    CAS  Google Scholar 

  • McManus KJ, Stephens DA, Adams NM, Islam SA, Freemont PS, Hendzel MJ (2006) The transcriptional regulator CBP has defined spatial associations within interphase nuclei. PLoS Comput Biol 2(10):e139

    Article  PubMed  Google Scholar 

  • Neves H, Ramos C, da Silva MG, Parreira A, Parreira L (1999) The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93:1197–1207

    PubMed  CAS  Google Scholar 

  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141

    Article  PubMed  CAS  Google Scholar 

  • Paddock SW, Hazen EJ, DeVries PJ (1997) Methods and applications of three colour confocal imaging. BioTech 22:120–126

    CAS  Google Scholar 

  • Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Plenum, New York

    Book  Google Scholar 

  • Quina AS, Parreira L (2005) Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells. Exp Cell Res 307:52–64

    Article  PubMed  CAS  Google Scholar 

  • Rippe K (2007) Dynamic organization of the cell nucleus. Curr Opin Genet Develop 17:373–380

    Article  CAS  Google Scholar 

  • Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon 3:144–147

    Article  CAS  Google Scholar 

  • Rohr K (2001) Landmark-based image analysis: using geometric and intensity models. Kluwer, London

    Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of ­translocation-prone gene loci in human lymphomas. Nat Genet 34(3):287–291

    Article  PubMed  CAS  Google Scholar 

  • Russ JC (1995) The image processing handbook, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Russell RA, Adams NM, Stephens DA, Batty E, Jensen K, Freemont PS (2009) Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture. Biophys J 96(8):3379–3389

    Article  PubMed  CAS  Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Elec Imag 13(1):146–165

    Article  Google Scholar 

  • Shiels C, Adams NM, Islam SA, Stephens DA, Freemont PS (2007) Quantitative analysis of cell nucleus organisation. PLoS Comput Biol 3(7):e138

    Article  PubMed  Google Scholar 

  • Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJE, Freemont PS, Sheer D (2001) PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 114:3705–3716

    PubMed  CAS  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (1993) Image processing, analysis and machine vision. International Thomson Computer Press, London

    Google Scholar 

  • Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D (2004) Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164:515–526

    Article  PubMed  CAS  Google Scholar 

  • Xavier JB, Schnell A, Wuertzb S, Palmer R, White DC, Almeida JS (2001) Objective ­threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. J Microbiol Meth 47(2):169–180

    Article  CAS  Google Scholar 

  • Yang S, Illner D, Teller K, Solovei I, van Driel R, Joffe B, Cremer T, Eils R, Rohr K (2008) Structural analysis of interphase X-chromatin based on statistical shape theory. Biochimica Biophysica Acta 1783(11):2089–2099

    Article  CAS  Google Scholar 

  • Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  PubMed  CAS  Google Scholar 

  • Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vision Comput 21:977–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Freemont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Russell, R.A., Adams, N.M., Stephens, D., Batty, E., Jensen, K., Freemont, P.S. (2011). Methodology for Quantitative Analysis of 3-D Nuclear Architecture. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_6

Download citation

Publish with us

Policies and ethics