Skip to main content

Statistical Shape Theory and Registration Methods for Analyzing the 3D Architecture of Chromatin in Interphase Cell Nuclei

  • Chapter
  • First Online:
Advances in Nuclear Architecture

Abstract

For studying the 3D structure formed by consecutive genomic regions of chromosomes we propose using statistical shape theory in conjunction with registration methods. In contrast to earlier work, where the 3D chromatin structure was analyzed indirectly, we here directly exploit the 3D locations of genomic regions to determine the large-scale structure of chromatin fiber. Our study is based on 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. To allow unique reconstruction of the 3D shape, image data with sets of four consecutive BACs have been acquired with an overlap of three BACs between the different sets. We have statistically analyzed the data and it turned out that for all datasets the 3D structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the 3D structure of chromatin in a small genomic region based on five BACs resulting from two overlapping four BACs. We also found that spatial normalization of cell nuclei using non-rigid image registration has a significant influence on the location of the genomic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Chikuse Y, Jupp PE (2004) A test of uniformity on shape spaces. J Multivar Anal 88:163–176

    Article  Google Scholar 

  • Chuang C, Belmont A (2007) Moving chromatin within the interphase nucleus-controlled transitions? Semin Cell Dev Biol 18:698–706

    Article  PubMed  CAS  Google Scholar 

  • Chuang C, Carpenter A, Fuchsova B, Johnson T, de Lanerole P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromo Res 9(7):541–567

    Article  CAS  Google Scholar 

  • Cremer M, Müller S, Köhler D, Brero A, Solovei I (2007) Cell preparation and multicolor FISH in 3D preserved cultured mammalian cells, CSH Protocols, doi:10.1101/pdb.prot4723

    Google Scholar 

  • Dryden I, Mardia K (1998) Statistical Shape Analysis. Wiley, Chichester

    Google Scholar 

  • Dundr M, Ospina J, Sung M, John S, Upender M, Ried T, Hager G, Matera A (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Fisher NI, Lewis T, Embleton B (1987) Statistical analysis of spherical data. The Press Syndicate of the University of Cambridge, Cambridge

    Book  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  PubMed  CAS  Google Scholar 

  • Götze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27(12):4475–4487

    Article  Google Scholar 

  • Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4:629–642

    Article  Google Scholar 

  • Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide. Kitware, New York

    Google Scholar 

  • Jupp PE, Mardia KV (1980) A general correlation coefficient for directional data and related regression problems. Biometrika 67(1):163–173

    Article  Google Scholar 

  • Kosak S, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukásová E, Jirsová P, Koutná I, Kozubek M, Ganová A, Bártová E, Falk M, Paseková R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331

    Article  PubMed  CAS  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115

    Article  PubMed  Google Scholar 

  • Lyon M (1961) Gene action in the x-chromosome of the mouse (mus musculus l.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley, Chichester

    Google Scholar 

  • Ostashevsky J (1998) A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes. Mol Biol Cell 9:3031–3040

    PubMed  CAS  Google Scholar 

  • Parreira L, Telhada M, Ramos C, Hernandez R, Neves H, Carmo-Fonseca M (1997) The spatial distribution of human immunoglobulin genes within the nucleus: evidence for gene topography independent of cell type and transcriptional activity. Hum Genet 100:588–594

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Bender M, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ, Marcus IF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Schroeder W, Matin K, Lorensen B (2003) The visualization toolkit, an object-oriented approach to 3D graphics, 3rd edn. Kitware, New York

    Google Scholar 

  • Sexton T, Schober H, Fraser P, Gasser S (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Skalníková M, Kozubek S, Lukášova E, Bártová E, Jirsová P, Cafourková A, Koutná I, Kozubek M (2000) Spatial arrangement of genes, centromeres and chromosomes in human blood cell nuclei and its changes during the cell cycle, differentiation and after irradiation. Chromo Res 8:487–499

    Article  Google Scholar 

  • Solovei I, Walter J, Cremer M, Habermann F, Schermelleh L, Cremer T (2002) FISH: a practical approach, Ch. 7 FISH on three-dimensionally preserved nuclei. Oxford University Press, Oxford, pp 119–157

    Google Scholar 

  • Soutoglou E, Misteli T (2007) Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 17:435–442

    Article  PubMed  CAS  Google Scholar 

  • Sproul D, Gilbert N, Bickmore W (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6:775–781

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Joffe B, Bolzer A, Albiez H, Benedetti P, Müller S, Speicher M, Cremer T, Cremer M, Solovei I (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114:367–378

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Götze S, Mateos-Langerak J, van Driel R, Eils R, Rohr K (2007) Variability analysis of the large-scale structure of interphase chromatin fiber based on statistical shape theory. In: Advances in mass-data, analysis of images and signals in medicine, biotechnology and chemistry (MDA). Springer-Verlag, Berlin, pp 37–46

    Google Scholar 

  • Yang S, Köhler D, Teller K, Cremer T, Baccon PL, Heard E, Eils R, Rohr K (2008) Nonrigid registration of 3-d multichannel microscopy images of cell nuclei. IEEE Trans Image Process 17(4):493–499

    Article  PubMed  CAS  Google Scholar 

  • Yokota H, van den Engh G, Jearst J, Sachs R, Trask B (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human g0/g1 interphase nucleus. J Cell Biol 130:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Zlatanova J, Leuba S, van Holde K (1998) Chromatin fiber structure: morphology, molecular determinants, structural transitions. Biophys J 74:2554–2566

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU project 3DGENOME. TC also acknowledges the support by the Wilhelm-Sanderstiftung (2001.079.2). The work benefited from the use of the Insight Toolkit (ITK) Ibanez et al. (2005) and the Visualization Toolkit (VTK) (Schroeder et al. 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Rohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Yang, S. et al. (2011). Statistical Shape Theory and Registration Methods for Analyzing the 3D Architecture of Chromatin in Interphase Cell Nuclei. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_4

Download citation

Publish with us

Policies and ethics