Skip to main content

Quantitative Approaches to Nuclear Architecture Analysis and Modelling

  • Chapter
  • First Online:
Advances in Nuclear Architecture

Abstract

The spatial organisation of the genome in the cell nucleus has emerged as a key element to understand gene function. A wealth of molecular and microscopic information has been accumulated, resulting in a variety of – sometimes contradictory – models of nuclear architecture. So far, however, a large part of this structural information and in consequence also the models derived from them are ‘qualitative’. In this overview, a brief introduction will be given into quantitative experimental and modelling approaches to large scale nuclear genome architecture in human cells. As a biomedical application example, the use of a quantitative computer model of the 3D architecture allowed to explore different implications of nuclear structure on chromosomal aberrations. In addition, we shall present two novel examples for quantitative computer modelling: (1) The impact of SC 35 splicing domains on nuclear genome structure; (2) The dynamics of large scale nuclear genome structure in a Brownian motion model. Finally, we shall discuss some perspectives to extend quantitative nuclear structure analysis to the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe E (1873) Beitraege zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:411–468

    Google Scholar 

  • Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kuepper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14:707–733

    Article  PubMed  CAS  Google Scholar 

  • Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A et al (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Arsuaga J, Greulich-Bode KM, Vazquez M, Bruckner M, Hahnfeldt P, Brenner DJ, Sachs R, Hlatky L (2004) Chromosome spatial clustering inferred from radiogenic aberrations. Int J Radiat Biol 80:507–515

    Article  PubMed  CAS  Google Scholar 

  • Baddeley D, Carl C, Cremer C (2006) 4Pi microscopy deconvolution with a variable point-spread function. Appl Opt 45:7056–7064

    Article  PubMed  Google Scholar 

  • Baddeley D, Jayasinghe I, Cremer C, Cannell M, Soeller C (2009) Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J. doi:10.1016/j.bpj.2008.11.002

    PubMed  Google Scholar 

  • Ballarini F, Biaggi M, Ottolenghi A (2002) Nuclear architecture and radiation induced chromosome aberrations: models and simulations. Radiat Prot Dosimetry 99:175–182

    Article  PubMed  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Bewersdorf J, Bennett BT, Knight KL (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc Natl Acad Sci U S A 103:18137–18142

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth Ch, Müller S, Eils R, Cremer C, Speicher M, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biol 3:e157

    Article  PubMed  CAS  Google Scholar 

  • Bornfleth H, Sätzler K, Eils R, Cremer C (1998) High–precision distance measurements and volume–conserving segmenta tion of objects near and below the resolution limit in three–dimensional confoca l fluorescence microscopy. J Microsc 189:118–136

    Article  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer C (1999a) Handbook of computer vision and applications, vol III, Chapter Three – dimensional analysis of genome topology. Academic Press, San Diego/New York, pp 859–878

    Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999b) Quantitative motion analysis of sub–chromosomal foci in living cells using four–dimensional microscopy. Biophys J 75(5):2871–2886

    Article  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Pombo A (2007) Chromosome organization: new facts, new models. Trends Cell Biol

    Google Scholar 

  • Bridger JML (1999) Analysis of mammalian interphase chromosome by FISH and immunofluorescence. In: Bickmore WA (ed) Chromsome structural ananlysis. Oxford University Press, Oxford, pp 103–123

    Google Scholar 

  • Chevret E, Volpi EV, Sheer D (2000) Mini review: form and function in the human interphase chromosome. Cytogenetic Cell Genet 90(1–2):13–21

    Article  CAS  Google Scholar 

  • Cornforth MN, Greulich-Bode KM, Loucas BD, Arsuaga J, Vazquez M, Sachs RK, Bruckner M, Molls M, Hahnfeldt P, Hlatky L, Brenner DJ (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159:237–244

    Article  PubMed  CAS  Google Scholar 

  • Cremer C, Cremer T (1972) Verfahren zur Darstellung bzw. Modifikation von Objekt-Details, deren Abmessungen außerhalb der sichtbaren Wellenlänge liegen (Procedure to image or modify object details with dimensions below the wavelength of visible light). Ger Pat Appl P 21 16 521.9 (filed 5 April 1971)

    Google Scholar 

  • Cremer C, Cremer T (1978) Considerations on a Laser-Scanning-Microscope with high resolution and depth of field. Microsc Acta 81:31–44

    PubMed  CAS  Google Scholar 

  • Cremer T (1985) Von der Zellenlehre zur Chromosomentheorie, Naturwissenschaftliche Erkenntnis und Theorienwechsel in der fr¨uhen Zell– und Vererbungsforschung. Springer, Heidelberg

    Book  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schröck E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 85:777–792

    Article  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome–specific library probes. Hum Genet 80:235–246

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schröck E, et al. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleas. Cold Spring Harb Symp Quant Biol. 1993;85:777–792

    Google Scholar 

  • Cremer C, Muenkel C, Granzow M, Jauch A, Dietzel S, Eils R, Guan XY, Meltzer PS, Trent JM, Langowski J, Cremer T (1996) Nuclear architecture and the induction of chromosomal aberrations. Mutat Res 366:97–116

    Article  PubMed  CAS  Google Scholar 

  • Cremer C, Edelmann P, Bornfleth H, Kreth G, Muench H, Luz H, Hausmann M (1999) Principles of Spectral Precision Distance confocal microscopy for the analysis of molecular nuclear structure. In: Jähne B, Haußecker H, Geißler P (eds) Handbook of computer vision and applications, vol 3. Academic Press, San Diego/New York, pp 839–857

    Google Scholar 

  • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit R Eukaryot Gene Express 12:179–212

    Google Scholar 

  • Cremer M, Hase JV, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chrom Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territiories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Mueller S, Solovei I, Fakan S (2006) Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2006a) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50:161–176

    PubMed  Google Scholar 

  • Cremer T, Cremer C (2006b) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50:223–272

    PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localisation and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Eils R, Saetzler K, Bornfleth H, Jauch A, Cremer C, Cremer T (1998) Evidence against a looped structure of the inactive human X–chromosome territory. Exp Cell Res 240:187–196

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Berezney R (2002) The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115:4037–4051

    Article  PubMed  CAS  Google Scholar 

  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli S, Luhrmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular–scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445

    Article  PubMed  CAS  Google Scholar 

  • Deloukas P, Schuler GD, Gyapay G, Beasley EM, Soderlund C, Rodriguez-Tomé P, Hui L, Matise TC, McKusick KB, Beckmann JS, Bentolila S, Bihoreau M, Birren BB, Browne J, Butler A, Castle AB, Chiannilkulchai N, Clee C, Day PJ, Dehejia A, Dibling T, Drouot N, Duprat S, Fizames C, Fox S, Gelling S, Green L, Harrison P, Hocking R, Holloway E, Hunt S, Keil S, Lijnzaad P, Louis-Dit-Sully C, Ma J, Mendis A, Miller J, Morissette J, Muselet D, Nusbaum HC, Peck A, Rozen S, Simon D, Slonim DK, Staples R, Stein LD, Stewart EA, Suchard MA, Thangarajah T, Vega-Czarny N, Webber C, Wu X, Hudson J, Auffray C, Nomura N, Sikela JM, Polymeropoulos MH, James MR, Lander ES, Hudson TJ, Myers RM, Cox DR, Weissenbach J, Boguski MS, Bentley DR (1998) A physical map of 30, 000 human genes. Science 282:744–746

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  PubMed  CAS  Google Scholar 

  • Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C (2001) Morphology and dynamics of chromosome territories in living cells. Biochimica et Biophysica Acta 1551:M29–M40

    PubMed  CAS  Google Scholar 

  • Edelmann P, Cremer C (2000) Improvement of confocal spectral precision distance microscopy (SPDM). In: Farkas DL, Leif RC (eds) Optical diagnostics of Living Cells III. Proceedings of SPIE, vol 3921, pp 313–320

    Google Scholar 

  • Edelmann P, Esa A, Hausmann M, Cremer C (1999) Confocal laser-scanning fluorescence microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei. Optik 110:194–198

    Google Scholar 

  • Edwards AA (1997) The use of chromosomal aberrations in human lymphocytes for biological dosimetry. Radiat Res 148:539–544

    Article  Google Scholar 

  • Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99:3370–3375

    Article  PubMed  CAS  Google Scholar 

  • Esa A, Edelmann P, Trakthenbrot L, Amariglio N, Rechavi G, Hausmann M, Cremer C (2000) 3D–spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple–colour labeling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J Microsc 199:96–105

    Article  PubMed  CAS  Google Scholar 

  • Esa A, Coleman AE, Edelmann P, Silva S, Cremer C, Janz S (2001) Conformational differences in the 3D-nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genet Cytogen 127:168–173

    Article  CAS  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosme territories. J Cell Biol 139:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Friedland W, Paretzke HG, Ballarini F, Ottolenghi A, Kreth G, Cremer C (2008) First steps towards systems radiation biology studies concerned with DNA and chromosome structure within living cells. Radiat Environ Biophys 47:49–61

    Article  PubMed  Google Scholar 

  • Geisler P, Schoenle A, von Middendorff C, Boch H, Eggeling C, Egner A et al (2007) Resolution of l/10 in fluorescence microscopy using fast single molecule photoswitching. Appl Phys A 88:223–226

    Article  CAS  Google Scholar 

  • Gonzalez-Melendi P, Beven A, Boudonck K, Abranches R, Wells B, Dolan L, Shaw P (2000) The nucleus: a highly organized but dynamic structure. J Microsc 198:199–207

    Article  PubMed  CAS  Google Scholar 

  • Gruenwald D, Martin RM, Buschmann V, Bazett-Jones DP, Leonhardt H, Kubitscheck U, Cardoso MC (2008) Probing intranuclear environments at the single-molecule level. Biophys J 94:2847–2858

    Article  CAS  Google Scholar 

  • Gunkel M, Erdel F, Rippe K, Lemmer P, Kaufmann K, Hoermann C, Amberger R, Cremer C (2009) Dual color localization microscopy of cellular nanostructures, Biotechnology J: S927–938

    Google Scholar 

  • Heilemann M, Herten DP, Heintzmann R, Cremer C, Muller C, Tinnefeld P, Weston KD, Wolfrum J, Sauer M (2002) High–resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal Chem 74:3511–3517

    Article  PubMed  CAS  Google Scholar 

  • Heintzmann R, Cremer C (1999) Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating. SPIE 3568:185–196

    Article  Google Scholar 

  • Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  PubMed  CAS  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  PubMed  CAS  Google Scholar 

  • Hildenbrand G, Rapp A, Spoeri U, Wagner C, Cremer C, Hausmann M (2005) Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophys J 88:4312–4318

    Article  PubMed  CAS  Google Scholar 

  • Holley WR, Mian IS, Park SJ, Rydberg B, Chatterjee A (2002) A model for interphase chromosomes and evaluation of radiation-induced aberrations. Radiat Res 158:568–580

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  • Johnston PJ, Olive PL, Bryant PE (1997) Higher-order chromatin structure-dependent repair of DNA double-strand breaks: modelling the elution of DNA from nucleoids. Radiat Res 148:561–567

    Article  PubMed  CAS  Google Scholar 

  • Kepper N (2005) Brownsche Dynamik Simulationen von ganzen Zellkernen zur Bestimmung der Bewegungsmuster von Chromosomen und Genregionen auf der Grundlage des 1-Mbp SCD Modells. Dissertation, University Heidelberg

    Google Scholar 

  • Kepper N, Foethke D, Stehr R, Wedeman G, Rippe K (2008) Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J 95:3692–3705

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bartova E, Kroha V, Krahulcova E, Slotova J (1999) The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9, 22) translocations and in the pathogenesis of t(9, 22) leukemias. Chromosoma 108:426–435

    Article  PubMed  CAS  Google Scholar 

  • Kreth G, Finsterle J, von Hase J, Cremer M, Cremer C (2004) Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. Biophys J 86:2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Kreth GJ, Finsterle CC (2004b) Virtual radiation biophysics: implications of nuclear structure. Cytogenet Genome Res 104:157–161

    Article  PubMed  CAS  Google Scholar 

  • Kreth G, Pazhanisamy SK, Hausmann M, Cremer C (2007) Cell type specific quantitative predictions of radiation-induced chromosomal aberrations by a computer model approach. Radiat Res 167:515–525

    Article  PubMed  CAS  Google Scholar 

  • Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci U S A 97:9461–9466

    Article  PubMed  CAS  Google Scholar 

  • Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B Lasers O. doi:10.1007/s00340-008-3152-x

    Google Scholar 

  • Lemmer P, Gunkel M, Weiland Y, Mueller P, Baddeley D, Kaufmann R, Urich A, Eipel H, Amberger R, Hausmann M, Cremer C (2009) Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc 235:S163–171

    Article  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR (Mar 2000) Higher levels of organization in interphase nucleus of cycling and differentiated cells. Microbiol Mol Bio Rev 64(1):138–152

    Article  CAS  Google Scholar 

  • Lloyd DC, Edwards AA, Prosser JS (1986) Chromosome aberrations induced in human lymphocytes by in vitro acute X and gamma radiation. Radiat. Prot. Dosim. 15, 83–88

    Google Scholar 

  • Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–821

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7:930–939

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Failla AV, Spöri U, Cremer C, Pombo A (2004) Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Mol Biol Cell 15:2449–2455

    Article  PubMed  CAS  Google Scholar 

  • Mehring C (1998) Simulation of chromosomes. Master’s thesis, Ruperto-Carola University of Heidelberg, Germany

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Morten NE (1991) Parameters of the human genome. Proc Natl Acad Sci U S A 88:7474–7476

    Article  Google Scholar 

  • Muenkel C, Langowski J (1998) Chromosome structure predicted by a polymer model. Phys Rev E 57:5888–5896

    Article  Google Scholar 

  • Nicodemi M, Prisco A (2009) Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys J 96:2168–2177

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, Bult CJ, Cremer C, Grunze M, Knowles BB, Langowski J, McNally J, Pederson T, Politz JC, Pombo A, Schmahl G, Spatz JP, van Driel R (2003) Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res 13(6):1029–1041

    Article  CAS  Google Scholar 

  • Odenheimer J, Heermann D, Kreth G (2009) Brownian dynamics simulations reveal regulatory properties of higher-order chromatin structures. Euro Biophys J 38(6):749–756

    Article  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432

    Article  PubMed  CAS  Google Scholar 

  • Parada L, Sotiriou S, Misteli T (2004) Spatial genome organization. Exp Cell Res 296:64–70

    Article  PubMed  CAS  Google Scholar 

  • Patwardhan A (1997) Subpixel position measurement using 1D, 2D, 3D centroid algorithms with emphasis on applications in confocal microscopy. J Microsc 186:246–257

    Article  Google Scholar 

  • Rippe K, Mazurkiewicz J, Kepper N (2008) Interactions of histones with DNA: nucleosome assembly, stability and dynamics. In: Dias RS, Lindman B (eds) DNA interactions with polymers and surfactants. Wiley, London, pp 135–172. ISBN 978-0-8138-0646-4

    Chapter  Google Scholar 

  • Reymann J, Baddeley D, Gunkel M, Lemmer P, Stadter W, Jegou T, Rippe K, Cremer C, Birk U (2008) High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome R 16:367–382

    Article  CAS  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291

    Article  PubMed  CAS  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–795

    Article  CAS  Google Scholar 

  • Qumsiyeh MB (Jul 1999) Structure and function of the nucleus: anatomy and physiology of chromatin. Cell Mol Life Sci 55(8–9):1129–1140

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, Chen AM, Brenner DJ (1997) Proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol 71:1–19

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, Levy D, Chen AM, Simpson PJ, Cornforth MN, Ingerman E, Hahnfeldt P, Hlatky LR (2000) Random breakage-and reunion chromosome aberration formation model: an interaction-distance implementation based on chromatin geometry. Int J Radiat Biol 76:1579–1588

    Article  PubMed  CAS  Google Scholar 

  • Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labelling of early and mid–to–late replicating chromatin in living cells. Chromosome R 9:77–80

    Article  CAS  Google Scholar 

  • Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Meth 5:539–544

    Article  CAS  Google Scholar 

  • Shopland L, Johnson C, Byron M, McNeil J, Lawrence J (2003) R-bands around SC-35 domains: evidence for local euchromatic neighbourhoods. J Cell Biol 162(6):981–990

    Article  PubMed  CAS  Google Scholar 

  • Schroeck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, Garini Y, Ried T (1996) Multicolour spectral karyotyping of human chromosomes. Science 273:494–497

    Article  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D–FISH). Exp Cell Res 276:10–23

    Article  PubMed  CAS  Google Scholar 

  • Speicher MR, Ballard SG, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Müller St, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. P Nat Acad Sci U S A 99:4424–4429

    Article  CAS  Google Scholar 

  • Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL (2000) Visualization of gene activity in living cells. Nat Cell Biol 2(12):871–878

    Article  PubMed  CAS  Google Scholar 

  • van Oijen AM, Koehler J, Schmidt J, Muller M, Brakenhoff GJ (1999) Far-field fluorescence microscopy beyond the diffraction limit. J Opt Soc Am A 16:909–991

    Article  Google Scholar 

  • Verschure PJ, van der Kraan I et al (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO reports 4(9):861–866

    Article  PubMed  CAS  Google Scholar 

  • Visser AE, Eils R, Jauch A, Little G, Bakker PJM, Cremer T, Aten JA (1998) Spatial distribution of early and late replicating chromatin in interphase chromosome territories. Exp Cell Res 243:398–407

    Article  PubMed  CAS  Google Scholar 

  • Visser AE, Jaunin F, Fakan S, Aten JA (2000) High resolution analysis of interphase chromosome domains. J Cell Sci 113(Pt 14):2585–2593

    PubMed  CAS  Google Scholar 

  • Weierich C, Brero A, Stein S, Hase JV, Cremer C, Cremer T, Solovei I (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chrom Res 11(5):485–502

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Johnson CV, Moen PTJ, McNeil JA, Lawrence J (1995) Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol 131:1635–1647

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247:176–188

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Cremer T (1998) Cell nucleus: chromosome dynamics in nuclei of living cells. Curr Biol 8:R321–324

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102(2):241–251

    Article  PubMed  CAS  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1(2):93–106

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1997) Junk DNA and sectorial gene repression. Gene 205(1–2):323–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsge­meinschaft and the European Union. For discussions and other help we especially thank Manuel Gunkel, Rainer Kaufmann and Thomas Cremer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Cremer or Gregor Kreth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Hübschmann, D., Kepper, N., Cremer, C., Kreth, G. (2011). Quantitative Approaches to Nuclear Architecture Analysis and Modelling. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_3

Download citation

Publish with us

Policies and ethics