Skip to main content

Spatial Point Process Analysis of Promyelocytic Leukemia Nuclear Bodies

  • Chapter
  • First Online:
Advances in Nuclear Architecture

Abstract

There has been widespread interest in the nuclear body (NB) Promyelocytic leukemia (PML) because of its link to several human disorders, including Promyelocytic leukemia and AIDS. The notion of PML NB interaction with its surrounding and other NBs such as RNA Polymerase II (RNA Pol II) is of great importance as it can improve our understanding of the function of PML. In this paper, spatial point process methods are used to conduct multivariate analysis to assess the relationship between the spatial locations of PML NBs relative to RNA Pol II. We also propose a model for PML NB locations. By fitting a model to the PML NBs we are able to gain insight into how PML NBs are distributed across the nucleus in relation to themselves and the nuclear boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baddeley AJ, Moyeed RA, Howard CV, Boyde A (1992) Analysis of a three-dimensional point pattern with replication. Appl Statist 42(4):641–668

    Article  Google Scholar 

  • Baddeley AJ, Kerscher M, Schladitz K, Scott BT (2000) Estimating the J function without edge correction. Stat Neerl 54:315–328

    Article  Google Scholar 

  • Barr D, Sherrill E (1999) Mean and variance of truncated normal distributions. Am Statist 53(4):357–361

    Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehie D, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biol 3(5):826–842

    Article  CAS  Google Scholar 

  • Borden KLB (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22(15):5259–5269

    Article  PubMed  CAS  Google Scholar 

  • Brix A, Kendall WS (2002) Simulation of cluster point processes without edge effects. Adv Appl Probabil 34(2):267–280

    Article  Google Scholar 

  • Cox DR, Isham V (1980) Point processes. Chapman and Hall, New York

    Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of dna damage and cellular stress. BioEssays 26(9):963–977

    Article  PubMed  CAS  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Arnold, London

    Google Scholar 

  • Fishman GS (1996) Monte Carlo. Springer, New York

    Google Scholar 

  • Fleischer F, Beil M, Kazda M, Schmidt V (2006) Analysis of spatial point patterns in microscopic and macroscopic biological image data. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point process modeling, Lecture Notes in Statistics. Springer, Berlin, pp 232–259

    Google Scholar 

  • Glasbey CA, Roberts IM (1997) Statistical analysis of the distribution of gold particles over antigen sites after immunogold labelling. J Microsc 186(3):258–262

    Article  Google Scholar 

  • Hanisch KH, Stoyan D (1979) Formulas for the second-order analysis of marked point processes. Statist J Theoret Appl Statist 10(4):555–560

    Google Scholar 

  • Kallenberg O (1984) An informal guide to the theory of conditioning in point processes. Int Statist Rev 52(2):151–164

    Article  Google Scholar 

  • Karr AF (1991) Point processes and their statistical inference. Marcel Dekker, New York

    Google Scholar 

  • Kemp CD (1988) Review: [untitled]. Statistician 37(1):84–85

    Article  Google Scholar 

  • Kerscher M (1998) Regularity in the distribution of superclusters? Astron Astrophys 336:29–34

    Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature 8:104–115

    CAS  Google Scholar 

  • Lewis PAW, Shedler GS (1976) Simulation of nonhomogeneous Poisson processes with log linear rate function. Biometrika 63(3):501–505

    Article  Google Scholar 

  • McManus KJ, Stephens DA, Adams NM, Islam SA, Freemont PS, Hendzel MJ (2006) The transcriptional regulator CBP has defined spatial association within interphase nuclei. PLOS Computat Biol 2(10):1271–1283

    CAS  Google Scholar 

  • Milne RK, Westcott M (1972) Further results for Gauss-Poisson processes. Adv Appl Probabil 4(1):151–176

    Article  Google Scholar 

  • Møller M, Waagepetersen RP (2001) Simulation based inference for spatial point processes, URL citeseer.ist.psu.edu/469797.html

  • Møller J, Waagepetersen RP (2002) Statistical inference for Cox processes. In: Lawson AB, Denison DGT (eds) Spatial cluster modelling. Chapman and Hall, Boca Raton, FL, p 37

    Google Scholar 

  • Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point ­processes. Chapman & Hall, Boca Raton

    Google Scholar 

  • Newman DS (1970) A new family of point processes which are characterised by their second moment properties. J Appl Probabil 7(2):338–358

    Article  Google Scholar 

  • Ripley BD (1987) Stochastic simulation. Wiley, New York

    Book  Google Scholar 

  • Ripley BD, Kelly FP (1977) Markov point processes. Lond Math Soc 15:188–192

    Article  Google Scholar 

  • Shiels C, Adams NM, Islam SA, Stephens DA, Freemont PS (2007) Quantitative analysis of cell nucleus organisation. Computat Biol 3:1161–1168

    CAS  Google Scholar 

  • Shopland LS, Johnson CV, Byron M, McNeil J, Lawrence JB (2003) Clustering of multiple specific genes and gene-rich r-bands around sc-35 domains: evidence for local euchromatic neighbourhoods. J Cell Biol 162:981–990

    Article  PubMed  CAS  Google Scholar 

  • Skellam JG (1952) Studies in statistical ecology: I. Spatial pattern. Biometrika 39(3/4):346–362

    Article  Google Scholar 

  • Stoyan D (2006) Fundamentals of point process statistics. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point pattern modelling, no. 185 in Lecture Notes in Statistics. Springer, New York, p 3

    Chapter  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields. John, Chichester

    Google Scholar 

  • Stoyan D, Kendall W, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Strauss DJ (1975) A model for clustering. Biometrika 62(2):467–475

    Article  Google Scholar 

  • Thompson HR (1955) Spatial point processes, with application to ecology. Biometrika 42(1/2):102–115

    Article  Google Scholar 

  • Umande P (2008) Spatial point pattern analysis with application to confocal microscopy data. Ph.D. thesis, Imperial College London

    Google Scholar 

  • Van Lieshout MNM (2004) A J-function for marked point patterns. Inst Statist Math 511–532

    Google Scholar 

  • Van Lieshout MNM, Baddeley AJ (1999) Indeces of dependence between types in ­multivariate point patterns. Scand J Statist 26:511–532

    Article  Google Scholar 

  • Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D (2004) Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164(4):515–526

    Article  PubMed  CAS  Google Scholar 

  • Webster S, Diggle PJ, Clough HE, Green RB, French NP (2006) Strain-typing transmissible spongiform encephalopathies using replicated spatial data. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point pattern modelling, no. 185 in Lecture Notes in Statistics.Springer, New York, p 197

    Chapter  Google Scholar 

  • Xie SQ, Pombo A (2006) Distribution of different phosphorylated forms of rna polymerase ii in relation to cajal and PML bodies in human cells: an ultrastructural study. Histochemist Cell Biol 125:21–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Niall Adams and Professor Paul Freemont for their substantial involvement in this work, and Dr. Elizabeth Batty and Dr Carol Shiels for their experimental work. David Stephens is supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip P. Umande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Umande, P.P., Stephens, D.A. (2011). Spatial Point Process Analysis of Promyelocytic Leukemia Nuclear Bodies. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_2

Download citation

Publish with us

Policies and ethics