Skip to main content

Nuclear Subdomains and Cancer

  • Chapter
  • First Online:
Book cover Advances in Nuclear Architecture

Abstract

Cancer develops when genetic changes, such as the activation of oncogenes and inactivation of tumour suppressors, allow a cell to escape the normal growth and proliferation restrictions. These functional changes ultimately result in structural alterations at both the nuclear and cellular levels. As such, cell morphology and biological marker expression are some of the main criteria in tumour pathology for diagnosis and prognosis. The development of advanced microscopy techniques has provided a much more detailed map of the nuclear landscape, and because of this, structural changes in subnuclear bodies induced during oncogenesis can be readily visualized. This type of analysis has identified novel cancer biomarkers in the form of nuclear structures associated with malignancy, such as the perinucleolar compartment (PNC). It has also allowed a much more detailed examination of nuclear body function, which has provided novel mechanisms and regulators of tumour suppression and oncogenesis. This chapter will focus on three of the most important subnuclear domains for cancer biology: promyelocytic leukemia nuclear bodies (PML NBs), the nucleolus, and the perinucleolar compartment (PNC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgNORs:

Silver stained nucleolar organizer regions

AKT:

V-akt murine thymoma viral oncogene homolog 1

ALT:

Alternative lengthening of telomeres

APL:

Acute promyelocytic leukaemia

ARF:

Alternate reading frame protein

ASK1:

Mitogen-activated protein kinase kinase kinase 5

ATM:

Ataxia telangiectasia mutated

ATR:

ATM- and Rad3-related

ATRIP:

ATR-interacting protein

Bcl-2:

B-cell CLL/lymphoma 2

BCL2L11:

Bim/BCL2-like 11

Bop1:

Block of proliferation 1

BLM:

Bloom syndrome protein

Brca1:

Breast cancer 1

Br-U:

Bromouridine

CASP8AP2:

Caspase 8 associated protein 2

CBP:

CREB binding protein

CDK:

Cyclin-dependent kinase

CK1:

Casein kinase 1

CKII:

Casein kinase 2

CUG-BP:

CUG triplet repeat, RNA binding protein 1

DAXX:

Death-domain associated protein

DBA:

Diamond-Blackfan anemia

DC:

Dyskeratosis congenital

DKC1:

Dyskeratosis congenital, dyskerin

DFC:

Dense fribrillar component

E6AP:

E6-associated protein

ERK2:

Extracellular-signal-regulated protein kinase 2

FADD:

Fas (TNFRSF6)-associated via death domain

FCs:

Fibrillar centres

FLASH:

Flice-associated huge protein

FOXO:

Forkhead box

γ-H2A.X:

Phosphorylated H2A.X

GC:

Granular component

HAUSP:

Herpes-associated ubiquitin-specific protease

HDAC1:

Histone deacetylase 1

HIC1:

Hypermethylated in cancer 1

HIPK2:

Homeodomain interacting protein kinase 2

hMSH6:

Human mutS homolog 2

HP1:

Heterochromatin protein 1

HPV:

Human papilloma virus

HSV1:

Herpes Simplex Virus 1

IAPs:

Inhibitor of apoptosis proteins

IFNs:

Interferons

IGF-1:

Insulin-like growth factor 1

IκB:

Inhibitor of NF-κB

ING-1:

Inhibitor of growth 1

IRES:

Internal ribosome entry site

IRS:

Insulin receptor substrate

JNK:

c-Jun-N-terminal kinase

Kap1:

KRAB domain-associated protein 1

KSRP:

KH-type splicing regulatory protein

KSHV:

Karposi sarcoma-associated herpesvirus

LANA2:

Latency associated nuclear antigen 2

MAPK:

Mitogen-activated protein kinase

MDM2:

Mouse double minute 2

Mina53:

MYC induced nuclear antigen

Misu:

Myc-induced SUN domain-containing protein

Mre11:

Meiotic recombination 11

MRN:

Mre11, Rad50, NBS1

mRNA:

Messenger RNA

MTA2:

Metastasis-associated protein 2

mTOR:

Mammalian target of rapamycin

NBS1:

Nijmegen breakage syndrome 1

Nop2:

Nucleolar protein homolog (yeast) 2

NORs:

Nucleolar organizer regions

NPM:

Nucleophosmin

NF-κB:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

OPT:

Oct1, PTF transcription

PAWR:

PRKC, apoptosis, WT1, regulator

PI3K:

Phosphatidylinositol 3-kinase

PODs:

PML oncogenic domains

PML NBs:

Promyelocytic leukemia nuclear bodies

PNC:

Perinucleolar compartment

PP2A:

Protein phosphatase 2

pRB:

Retinoblastoma protein

pol:

Polymerase

PRMT1:

Protein arginine methyltransferase 1

PTEN:

Phosphatase and tensin homolog

PTB:

Polypyrimidine track binding protein

PTF:

PSE-binding factor subunit delta,small nuclear RNA activating complex, polypeptide 2, 45kDa

RanBP2:

Ran Binding Protein 2

RARα:

Retinoic acid receptor alpha

RBCC:

RING zinc finger, two B-boxes and coiled-coil domain

rDNA:

Ribosomal DNA

RecQL4:

RecQ protein-like 4

RING:

Really interesting new gene

RMRP:

RNA component of mitochondrial RNA processing endoribonuclease

RNF4:

Ring finger protein 4

RPLs:

Ribosomal proteins of the large subunit

RPSs:

Ribosomal proteins of the small subunit

rRNA:

Ribosomal RNA

RSK:

Ribosomal protein S6 kinase, RPS6KA1

SAHF:

Senescence-induced heterochromatin foci

scaRNA:

Small Cajal body RNA

SCE:

Sister-chromatid exchange

SENPs:

SUMO1/sentrin specific peptidase 1

SFCs:

Splicing factor compartments

SIM:

SUMO-interacting motif

SIRT1:

Sirtuin (silent mating type information regulation 2 homolog) 1

snRNPs:

Small nuclear ribonucleoproteins

SRP:

Signal recognition particle

SUMO:

Small ubiquitin modifier

TAF1:

TBP-associated factor 1

TCAB1:

Telomerase Cajal body protein 1

TERC:

Telomerase RNA component

TERT:

Telomerase reverse transcriptase

TGF-β:

Transforming growth factor beta

THAP1:

THAP domain containing apoptosisassociated protein 1

TIF-IA:

Transcription initiation factor IA

TIF-IB:

Transcription initiation factor IB

TIP60:

HIV-1 Tat interactive protein, KAT5 K(lysine) acetyltransferase 5

TNFα:

Tumour necrosis factor alpha

TNFSF10:

TRAIL/TNF superfamily, member 10

TopBP1:

Topoisomerase (DNA) II binding protein 1

TRF2:

Telomere repeat binding factor 2

TSA:

Trichostatin A

TTF-1:

Transcription terminator factor-1

SL1:

Promoter selectivity factor

UBC9:

Ubiquitin-conjugating enzyme E2I(UBC9 homolog, yeast)

UBF:

Upstream binding factor

USP7:

Ubiquitin specific protease 7

WRN:

Werner syndrome, RecQ helicase-like

YAP:

Yes-associated protein

ZIPK:

ZIP kinase, death-associated protein kinase 3

References

  • Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M, Szekely L, Helin K, Pelicci PG (1998) The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 18:1084–1093

    PubMed  CAS  Google Scholar 

  • Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E, Haupt Y (2008) PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 27:3653–3661

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I, Larsson LG, Wright AP (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  PubMed  CAS  Google Scholar 

  • Badhai J, Frojmark AS, Davey EJ, Schuster J, Dahl N (2009) Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-blackfan anemia. Biochim Biophys Acta 1792: 1036–1042

    Google Scholar 

  • Bailey D, O’Hare P (2002) Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. J Gen Virol 83:2951–2964

    PubMed  CAS  Google Scholar 

  • Bailey SM, Murnane JP (2006) Telomeres, chromosome instability and cancer. Nucleic Acids Res 34:2408–2417

    Article  PubMed  CAS  Google Scholar 

  • Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244

    Article  PubMed  CAS  Google Scholar 

  • Barr SM, Leung CG, Chang EE, Cimprich KA (2003) ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation. Curr Biol 13:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  PubMed  CAS  Google Scholar 

  • Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442:779–785

    Article  PubMed  CAS  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Bernardi R, Papa A, Pandolfi PP (2008) Regulation of apoptosis by PML and the PML-NBs. Oncogene 27:6299–6312

    Article  PubMed  CAS  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6:665–672

    Article  PubMed  CAS  Google Scholar 

  • Bernassola F, Oberst A, Melino G, Pandolfi PP (2005) The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 24:6982–6986

    Article  PubMed  CAS  Google Scholar 

  • Bernassola F, Salomoni P, Oberst A, Di Como CJ, Pagano M, Melino G, Pandolfi PP (2004) Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med 199:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Bierhoff H, Dundr M, Michels AA, Grummt I (2008) Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol Cell Biol 28:4988–4998

    Article  PubMed  CAS  Google Scholar 

  • Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A (2002) Deconstructing PML-induced premature senescence. Embo J 21:3358–3369

    Article  PubMed  CAS  Google Scholar 

  • Bischof O, Nacerddine K, Dejean A (2005) Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 25:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Boe SO, Haave M, Jul-Larsen A, Grudic A, Bjerkvig R, Lonning PE (2006) Promyelocytic leukemia nuclear bodies are predetermined processing sites for damaged DNA. J Cell Sci 119:3284–3295

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, Hendzel MJ, Masson JY, Richard S (2005) Methylation of MRE11 regulates its nuclear compartmentalization. Cell Cycle 4:981–989

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37:193–197

    Article  PubMed  CAS  Google Scholar 

  • Budde A, Grummt I (1999) p53 represses ribosomal gene transcription. Oncogene 18:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Bullwinkel J, Baron-Luhr B, Ludemann A, Wohlenberg C, Gerdes J, Scholzen T (2006) Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 206:624–635

    Article  PubMed  CAS  Google Scholar 

  • Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138:377–388

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, D’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  PubMed  CAS  Google Scholar 

  • Carbone R, Pearson M, Minucci S, Pelicci PG (2002) PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21:1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Castle JC, Zhang C, Shah JK, Kulkarni AV, Kalsotra A, Cooper TA, Johnson JM (2008) Expression of 24, 426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat Genet 40:1416–1425

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Syrjanen S, Kurvinen K, Syrjanen K (1993) The p53 tumor suppressor gene as a common cellular target in human carcinogenesis. Am J Gastroenterol 88:174–186

    PubMed  CAS  Google Scholar 

  • Chang HY, Nishitoh H, Yang X, Ichijo H, Baltimore D (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281:1860–1863

    Article  PubMed  CAS  Google Scholar 

  • Chang MS, Sasaki H, Campbell MS, Kraeft SK, Sutherland R, Yang CY, Liu Y, Auclair D, Hao L, Sonoda H, Ferland LH, Chen LB (1999) HRad17 colocalizes with NHP2L1 in the nucleolus and redistributes after UV irradiation. J Biol Chem 274:36544–36549

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  PubMed  CAS  Google Scholar 

  • Chelbi-Alix MK, de The H (1999) Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18:935–941

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Ke Y, Ding X, Wang F, Wang H, Wang W, Ahmed K, Liu Z, Xu Y, Aikhionbare F, Yan H, Liu J, Xue Y, Yu J, Powell M, Liang S, Wu Q, Reddy SE, Hu R, Huang H, Jin C, Yao X (2008) Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response. Oncogene 27:931–941

    Article  PubMed  CAS  Google Scholar 

  • Ciarmatori S, Scott PH, Sutcliffe JE, McLees A, Alzuherri HM, Dannenberg JH, te Riele H, Grummt I, Voit R, White RJ (2001) Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol Cell Biol 21:5806–5814

    Article  PubMed  CAS  Google Scholar 

  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853

    Article  PubMed  CAS  Google Scholar 

  • Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494

    Article  PubMed  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533

    Article  PubMed  CAS  Google Scholar 

  • Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de The H (2006) Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66:6192–6198

    Article  PubMed  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19

    Article  PubMed  CAS  Google Scholar 

  • Dai MS, Lu H (2008) Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105:670–677

    Article  PubMed  CAS  Google Scholar 

  • Dai MS, Sun XX, Lu H (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28:4365–4376

    Article  PubMed  CAS  Google Scholar 

  • Daniely Y, Borowiec JA (2000) Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J Cell Biol 149:799–810

    Article  PubMed  CAS  Google Scholar 

  • Daniely Y, Dimitrova DD, Borowiec JA (2002) Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol 22:6014–6022

    Article  PubMed  CAS  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G, Lowe SW (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13:523–535

    Article  PubMed  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684

    Article  PubMed  Google Scholar 

  • DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150

    PubMed  CAS  Google Scholar 

  • Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26:963–977

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Bazett-Jones DP (2007) Beyond repair foci: subnuclear domains and the cellular response to DNA damage. Cell Cycle 6:1864–1872

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Ching RW, Ahmed K, Jalali F, Tse KC, Bristow RG, Bazett-Jones DP (2006a) Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Biol 175:55–66

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Ching RW, Dehghani H, Ren Y, Bazett-Jones DP (2006b) The number of PML nuclear bodies increases in early S phase by a fission mechanism. J Cell Sci 119:1026–1033

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Eskiw CH, Dehghani H, Ching RW, Bazett-Jones DP (2006c) Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci 119:1034–1042

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Farrall R, Bickmore WA (2003) The Nuclear Protein Database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res 31:328–330

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Kepkay R, Bazett-Jones DP (2009) High resolution imaging of changes in the structure and spatial organization of chromatin, gamma-H2A.X and the MRN complex within etoposide-induced DNA repair foci. Cell Cycle 8:3750–3769

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Nisman R, Bazett-Jones DP (2004) Correlative light and electron spectroscopic imaging of chromatin in situ. Methods Enzymol 375:456–478

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M (2000) The AgNORs. Micron 31:117–120

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Ceccarelli C, Santini D, Taffurelli M, Trere D (2004) The prognostic value of the AgNOR parameter in human breast cancer depends on the pRb and p53 status. J Clin Pathol 57:755–761

    Article  PubMed  CAS  Google Scholar 

  • Derenzini M, Montanaro L, Trere D (2009) What the nucleolus says to a tumour pathologist. Histopathology 54:753–762

    Article  PubMed  Google Scholar 

  • Dias SS, Milne DM, Meek DW (2006) c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF. Oncogene 25:6666–6671

    Article  PubMed  CAS  Google Scholar 

  • Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N (2009) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta

    Google Scholar 

  • Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JK, Von Hoff D, Anderes K, Rice WG (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69:7653–7661

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  PubMed  CAS  Google Scholar 

  • Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76:333–343

    Article  PubMed  CAS  Google Scholar 

  • Dyck JA, Warrell RP Jr, Evans RM, Miller WH Jr (1995) Rapid diagnosis of acute promyelocytic leukemia by immunohistochemical localization of PML/RAR-alpha protein. Blood 86:862–867

    PubMed  CAS  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    Article  PubMed  CAS  Google Scholar 

  • Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA (2005) Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 14:1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Elias JM (1997) Cell proliferation indexes: a biomarker in solid tumors. Biotech Histochem 72:78–85

    Article  PubMed  CAS  Google Scholar 

  • Emmott E, Hiscox JA (2009) Nucleolar targeting: the hub of the matter. EMBO Rep 10:231–238

    Article  PubMed  CAS  Google Scholar 

  • Everett RD (2001) DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20:7266–7273

    Article  PubMed  CAS  Google Scholar 

  • Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, Parkinson J (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591

    PubMed  CAS  Google Scholar 

  • Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. Embo J 16:1519–1530

    Article  PubMed  CAS  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14:2015–2027

    PubMed  CAS  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G (2000) Regulation of p53 activity in nuclear bodies by a specific PML isoform. Embo J 19:6185–6195

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Ahmed K, Ding H, Ding X, Lan J, Yang Z, Miao Y, Zhu Y, Shi Y, Zhu J, Huang H, Yao X (2005) Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24:5401–5413

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Ho CC, Reineke E, Lam M, Cheng X, Stanya KJ, Liu Y, Chakraborty S, Shih HM, Kao HY (2008) Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation. Mol Cell Biol 28:5658–5667

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Chen XB, McGowan CH (2003) Mus81 endonuclease localizes to nucleoli and to regions of DNA damage in human S-phase cells. Mol Biol Cell 14:4826–4834

    Article  PubMed  CAS  Google Scholar 

  • Genovese C, Trani D, Caputi M, Claudio PP (2006) Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 25:5201–5209

    Article  PubMed  CAS  Google Scholar 

  • German J, Ellis NA, Proytcheva M (1996) Bloom’s syndrome. XIX. Cytogenetic and population evidence for genetic heterogeneity. Clin Genet 49:223–231

    Article  PubMed  CAS  Google Scholar 

  • Ghetti A, Pinol-Roma S, Michael WM, Morandi C, Dreyfuss G (1992) hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242:283–336

    Article  PubMed  CAS  Google Scholar 

  • Gjerset RA (2006) DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J Mol Histol 37:239–251

    Article  PubMed  CAS  Google Scholar 

  • Gong L, Millas S, Maul GG, Yeh ET (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275:3355–3359

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez L, Freije JM, Cal S, Lopez-Otin C, Serrano M, Palmero I (2006) A functional link between the tumour suppressors ARF and p33ING1. Oncogene 25:5173–5179

    PubMed  CAS  Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Article  PubMed  CAS  Google Scholar 

  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, Del Sal G (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. Embo J 18:6462–6471

    Article  PubMed  CAS  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318

    Article  PubMed  CAS  Google Scholar 

  • Gresko E, Ritterhoff S, Sevilla-Perez J, Roscic A, Frobius K, Kotevic I, Vichalkovski A, Hess D, Hemmings BA, Schmitz ML (2009) PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28:698–708

    Article  PubMed  CAS  Google Scholar 

  • Guha M, Altieri DC (2009) Survivin as a global target of intrinsic tumor suppression networks. Cell Cycle 8:2708–2710

    Article  PubMed  CAS  Google Scholar 

  • Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP (2000) The function of PML in p53-dependent apoptosis. Nat Cell Biol 2:730–736

    Article  PubMed  CAS  Google Scholar 

  • Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96:269–279

    Article  PubMed  CAS  Google Scholar 

  • Hall MP, Huang S, Black DL (2004) Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 15:774–786

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Hickson ID (2007) Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 64:2306–2322

    Article  PubMed  CAS  Google Scholar 

  • Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409

    Article  PubMed  CAS  Google Scholar 

  • Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5:225–229

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa F, Abe A, Kitabayashi I, Pandolfi PP, Naoe T (2008) Acetylation of PML is involved in histone deacetylase inhibitor-mediated apoptosis. J Biol Chem 283:24420–24425

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa F, Privalsky ML (2004) Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5:389–401

    Article  PubMed  CAS  Google Scholar 

  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. Embo J 17:7373–7381

    Article  PubMed  CAS  Google Scholar 

  • Heliot L, Mongelard F, Klein C, O’Donohue MF, Chassery JM, Robert-Nicoud M, Usson Y (2000) Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J Histochem Cytochem 48:13–20

    PubMed  CAS  Google Scholar 

  • Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65:2334–2359

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2006a) The nucleolus: a model for the organization of nuclear functions. Histochem Cell Biol 126:135–148

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D (2006b) Nucleolus: from structure to dynamics. Histochem Cell Biol 125:127–137

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Stollberg N, Schmitz ML, Will H (2003) HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res 63:8271–8277

    PubMed  CAS  Google Scholar 

  • Huang S (2000) Review: perinucleolar structures. J Struct Biol 129:233–240

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Deerinck TJ, Ellisman MH, Spector DL (1997) The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol 137:965–974

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Deerinck TJ, Ellisman MH, Spector DL (1998) The perinucleolar compartment and transcription. J Cell Biol 143:35–47

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Benavente SB, Nascimento E, Dragoni I, Kurowski A, Gillich A, Humphreys P, Frye M (2009) The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J Cell Biol 186:27–40

    Article  PubMed  CAS  Google Scholar 

  • Huttelmaier S, Illenberger S, Grosheva I, Rudiger M, Singer RH, Jockusch BM (2001) Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol 155:775–786

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S (1999) The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398:777–785

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234

    Article  PubMed  CAS  Google Scholar 

  • Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1:993–1000

    PubMed  CAS  Google Scholar 

  • James MJ, Zomerdijk JC (2004) Phosphatidylinositol 3-kinase and mTOR signaling pathways regulate RNA polymerase I transcription in response to IGF-1 and nutrients. J Biol Chem 279:8911–8918

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Shiels C, Freemont PS (2001) PML protein isoforms and the RBCC/TRIM motif. Oncogene 20:7223–7233

    Article  PubMed  CAS  Google Scholar 

  • Johnson FB, Marciniak RA, Guarente L (1998) Telomeres, the nucleolus and aging. Curr Opin Cell Biol 10:332–338

    Article  PubMed  CAS  Google Scholar 

  • Junttila MR, Evan GI (2009) p53–a Jack of all trades but master of none. Nat Rev Cancer 9:821–829

    Article  PubMed  CAS  Google Scholar 

  • Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66:663–674

    Article  PubMed  CAS  Google Scholar 

  • Kaldis P, Aleem E (2005) Cell cycle sibling rivalry: Cdc2 vs. Cdk2. Cell Cycle 4:1491–1494

    Article  PubMed  CAS  Google Scholar 

  • Kamath RV, Thor AD, Wang C, Edgerton SM, Slusarczyk A, Leary DJ, Wang J, Wiley EL, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S (2005) Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res 65:246–253

    PubMed  CAS  Google Scholar 

  • Karmakar P, Bohr VA (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126:1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S, Reed JC (2003) ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol Cell Biol 23:6174–6186

    Article  PubMed  CAS  Google Scholar 

  • Kemp CJ, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8:66–69

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Guevara C, Fujii G, Parry D (2004) p14ARF is a component of the p53 response following ionizing irradiation of normal human fibroblasts. Oncogene 23:6040–6046

    Article  PubMed  CAS  Google Scholar 

  • Killian A, Le Meur N, Sesboue R, Bourguignon J, Bougeard G, Gautherot J, Bastard C, Frebourg T, Flaman JM (2004) Inactivation of the RRB1-Pescadillo pathway involved in ribosome biogenesis induces chromosomal instability. Oncogene 23:8597–8602

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386(761):763

    Google Scholar 

  • Kirwan M, Dokal I (2009) Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta 1792:371–379

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa D, Kajiho H, Negishi T, Ura S, Watanabe T, Wada T, Ichijo H, Katada T, Nishina H (2006) Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation. Embo J 25:3286–3297

    Article  PubMed  CAS  Google Scholar 

  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C et al (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. Embo J 13:1073–1083

    PubMed  CAS  Google Scholar 

  • Krieghoff-Henning E, Hofmann TG (2008) Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 1783:2185–2194

    Article  PubMed  CAS  Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124:943–955

    Article  PubMed  CAS  Google Scholar 

  • Kurki S, Latonen L, Laiho M (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116:3917–3925

    Article  PubMed  CAS  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475

    Article  PubMed  CAS  Google Scholar 

  • Lai HK, Borden KL (2000) The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10:547–555

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, Duprez E, Pandolfi PP, Puvion E, Freemont P, de The H (2001) Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193:1361–1371

    Article  PubMed  CAS  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  PubMed  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J 21:2383–2396

    Article  PubMed  CAS  Google Scholar 

  • Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, Blandino G (2008) PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32:803–814

    Article  PubMed  CAS  Google Scholar 

  • Laronne A, Rotkopf S, Hellman A, Gruenbaum Y, Porter AC, Brandeis M (2003) Synchronization of interphase events depends neither on mitosis nor on cdk1. Mol Biol Cell 14:3730–3740

    Article  PubMed  CAS  Google Scholar 

  • Le XF, Vallian S, Mu ZM, Hung MC, Chang KS (1998) Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis. Oncogene 16:1839–1849

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Matera AG, Ward DC, Craft J (1996) Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. P Nat Acad Sci U S A 93:11471–11476

    Article  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  PubMed  CAS  Google Scholar 

  • Li H, Leo C, Zhu J, Wu X, O’Neil J, Park EJ, Chen JD (2000) Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20:1784–1796

    Article  PubMed  CAS  Google Scholar 

  • Li L, He D, He H, Wang X, Zhang L, Luo Y, Nan X (2006) Overexpression of PML induced apoptosis in bladder cancer cell by caspase dependent pathway. Cancer Lett 236:259–268

    Article  PubMed  CAS  Google Scholar 

  • Li M, Brooks CL, Kon N, Gu W (2004) A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13:879–886

    Article  PubMed  CAS  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Boone D, Hann SR (2008) Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. P Nat Acad Sci U S A 105:18794–18799

    Article  CAS  Google Scholar 

  • Lima CD, Reverter D (2008) Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 283:32045–32055

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Navarro S, Reddy S, Comai L (2006a) CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res 34:4752–4766

    Article  PubMed  CAS  Google Scholar 

  • Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006b) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24:341–354

    Article  PubMed  CAS  Google Scholar 

  • Lin HK, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431:205–211

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Li M, Lee EY, Maizels N (1999) Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage. Curr Biol 9:975–978

    Article  PubMed  CAS  Google Scholar 

  • Lombard DB, Guarente L (2000) Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60:2331–2334

    PubMed  CAS  Google Scholar 

  • Louria-Hayon I, Alsheich-Bartok O, Levav-Cohen Y, Silberman I, Berger M, Grossman T, Matentzoglu K, Jiang YH, Muller S, Scheffner M, Haupt S, Haupt Y (2009) E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ 16:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278:33134–33141

    Article  PubMed  CAS  Google Scholar 

  • Louvet E, Junera HR, Berthuy I, Hernandez-Verdun D (2006) Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 17:2537–2546

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377–381

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Pederson T (2008) Nucleostemin: a multiplex regulator of cell-cycle progression. Trends Cell Biol 18:575–579

    Article  PubMed  CAS  Google Scholar 

  • Maggi LB Jr, Weber JD (2005) Nucleolar adaptation in human cancer. Cancer Invest 23:599–608

    Article  PubMed  CAS  Google Scholar 

  • Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F (2004) Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24:3703–3711

    Article  PubMed  CAS  Google Scholar 

  • Mallette FA, Ferbeyre G (2007) The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6:1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Mallette FA, Goumard S, Gaumont-Leclerc MF, Moiseeva O, Ferbeyre G (2004) Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23:91–99

    Article  PubMed  CAS  Google Scholar 

  • Marciniak RA, Lombard DB, Johnson FB, Guarente L (1998) Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A 95:6887–6892

    Article  PubMed  CAS  Google Scholar 

  • Marcos-Villar L, Lopitz-Otsoa F, Gallego P, Munoz-Fontela C, Gonzalez-Santamaria J, Campagna M, Shou-Jiang G, Rodriguez MS, Rivas C (2009) Kaposi’s sarcoma-associated herpesvirus protein LANA2 disrupts PML oncogenic domains and inhibits PML-mediated transcriptional repression of the survivin gene. J Virol 83:8849–8858

    Article  PubMed  CAS  Google Scholar 

  • Mastrocola AS, Heinen CD (2009) Nuclear reorganization of DNA mismatch repair proteins in response to DNA damage. DNA Repair (Amst)

    Google Scholar 

  • Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Bierhoff H, Grummt I (2005) The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev 19:933–941

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4:1036–1038

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434

    Article  PubMed  CAS  Google Scholar 

  • Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A, Drynda A, Mendoza H, Gay RE, Hay RT, Ink B, Gay S, Pap T (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci U S A 104:5073–5078

    Article  PubMed  CAS  Google Scholar 

  • Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Lin T, Tsai RY (2008) Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci 121:4037–4046

    Article  PubMed  CAS  Google Scholar 

  • Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. Embo J 26:391–401

    Article  PubMed  CAS  Google Scholar 

  • Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21:281–288

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008

    PubMed  CAS  Google Scholar 

  • Mongelard F, Bouvet P (2007) Nucleolin: a multiFACeTed protein. Trends Cell Biol 17:80–86

    Article  PubMed  CAS  Google Scholar 

  • Montanaro L, Trere D, Derenzini M (2008) Nucleolus, ribosomes, and cancer. Am J Pathol 173:301–310

    Article  PubMed  CAS  Google Scholar 

  • Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783:2108–2115

    Article  PubMed  CAS  Google Scholar 

  • Mu ZM, Le XF, Vallian S, Glassman AB, Chang KS (1997) Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 18:2063–2069

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, Kametaka A, Azuma Y, Wilkinson KD, Dasso M (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174:939–949

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32:286–295

    Article  PubMed  CAS  Google Scholar 

  • Naka K, Ikeda K, Motoyama N (2002) Recruitment of NBS1 into PML oncogenic domains via interaction with SP100 protein. Biochem Biophys Res Commun 299:863–871

    Article  PubMed  CAS  Google Scholar 

  • Naoe T, Suzuki T, Kiyoi H, Urano T (2006) Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci 97:963–969

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  • Norton JT, Pollock CB, Wang C, Schink JC, Kim JJ, Huang S (2008a) Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer 113:861–869

    Article  PubMed  Google Scholar 

  • Norton JT, Wang C, Gjidoda A, Henry RW, Huang S (2008b) The perinucleolar compartment is directly associated with DNA. J Biol Chem

    Google Scholar 

  • Ochs RL, Stein TW Jr, Tan EM (1994) Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci 107(Pt 2):385–399

    PubMed  CAS  Google Scholar 

  • Oh W, Ghim J, Lee EW, Yang MR, Kim ET, Ahn JH, Song J (2009) PML-IV functions as a negative regulator of telomerase by interacting with TERT. J Cell Sci 122:2613–2622

    Article  PubMed  CAS  Google Scholar 

  • Olson MO (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004:pe10

    Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123:203–216

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277:41110–41119

    Article  PubMed  CAS  Google Scholar 

  • Oza P, Peterson CL (2010) Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle 9:43–49

    Article  PubMed  CAS  Google Scholar 

  • Pan D, Zhu Q, Luo K (2009) SnoN functions as a tumour suppressor by inducing premature senescence. Embo J 28:3500–3513

    Article  PubMed  CAS  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Petrie K, Zelent A (2008) Marked for death. Nat Cell Biol 10:507–509

    Article  PubMed  CAS  Google Scholar 

  • Pich A, Chiusa L, Audisio E, Marmont F (1998) Nucleolar organizer region counts predict complete remission, remission duration, and survival in adult acute myelogenous leukemia patients. J Clin Oncol 16:1512–1518

    PubMed  CAS  Google Scholar 

  • Pich A, Chiusa L, Margaria E (2000) Prognostic relevance of AgNORs in tumor pathology. Micron 31:133–141

    Article  PubMed  CAS  Google Scholar 

  • Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151:1561–1574

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Polena I, Trask I, Bazett-Jones DP, Pederson T (2005) A nonribosomal landscape in the nucleolus revealed by the stem cell protein nucleostemin. Mol Biol Cell 16:3401–3410

    Article  PubMed  CAS  Google Scholar 

  • Pollock C, Huang S (2009) The perinucleolar compartment. J Cell Biochem 107:189–193

    Article  PubMed  CAS  Google Scholar 

  • Pombo A, Cuello P, Schul W, Yoon JB, Roeder RG, Cook PR, Murphy S (1998) Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. Embo J 17:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235

    Article  PubMed  CAS  Google Scholar 

  • Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS, Means AR, Kao HY (2008) Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 28:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Rideau AP, Gooding C, Simpson PJ, Monie TP, Lorenz M, Huttelmaier S, Singer RH, Matthews S, Curry S, Smith CWJ (2006) A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nat Struct Mol Biol 13:839–848

    Article  PubMed  CAS  Google Scholar 

  • Rippe K (2007) Dynamic organization of the cell nucleus. Curr Opin Genet Dev 17:373–380

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484

    Article  PubMed  CAS  Google Scholar 

  • Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S, Kikyo N (2009a) Critical role of nucleostemin in pre-rRNA processing. J Biol Chem 284:4968–4977

    Article  PubMed  CAS  Google Scholar 

  • Romanova L, Kellner S, Katoku-Kikyo N and Kikyo N (2009b) Novel role of nucleostemin in the maintenance of nucleolar architecture and integrity of small nucleolar ribonucleoproteins and the telomerase complex. J Biol Chem

    Google Scholar 

  • Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472

    Article  PubMed  CAS  Google Scholar 

  • Roussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP (2003) THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 22:2432–2442

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. Embo J 22:6068–6077

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, Cordon-Cardo C, Pandolfi PP (2003) Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299:259–262

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192

    Article  PubMed  CAS  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Sato G, Usui K, Sato M, Sagawa M, Kondo T, Minami Y, Nukiwa T (2001) Expression of nucleolar protein p120 predicts poor prognosis in patients with stage I lung adenocarcinoma. Ann Oncol 12:1121–1125

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Uchimura Y, Tachibana T, Sugahara S, Saitoh H, Nakao M (2006) In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp Cell Res 312:1418–1430

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P (2009) Stemming out of a new PML era? Cell Death Differ 16:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Bernardi R, Bergmann S, Changou A, Tuttle S, Pandolfi PP (2005) The promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage. Blood 105:3686–3690

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Ferguson BJ, Wyllie AH, Rich T (2008) New insights into the role of PML in tumour suppression. Cell Res 18:622–640

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Khelifi AF (2006) Daxx: death or survival protein? Trends Cell Biol 16:97–104

    Article  PubMed  CAS  Google Scholar 

  • Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108:165–170

    Article  PubMed  CAS  Google Scholar 

  • Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett A K, Lo-Coco F (2008) Guidelines on the management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood

    Google Scholar 

  • Sanz MM, Proytcheva M, Ellis NA, Holloman WK, German J (2000) BLM, the Bloom’s syndrome protein, varies during the cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet Cell Genet 91:217–223

    Article  PubMed  CAS  Google Scholar 

  • Saporita AJ, Maggi LB Jr, Apicelli AJ, Weber JD (2007) Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem 14:1815–1827

    Article  PubMed  CAS  Google Scholar 

  • Sawicka K, Bushell M, Spriggs KA, Willis AE (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 036:641–647

    Article  CAS  Google Scholar 

  • Saxena A, Rorie CJ, Dimitrova D, Daniely Y, Borowiec JA (2006) Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 25:7274–7288

    Article  PubMed  CAS  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283

    Article  PubMed  CAS  Google Scholar 

  • Schawalder J, Paric E, Neff NF (2003) Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase. BMC Cell Biol 4:15

    Article  PubMed  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  PubMed  CAS  Google Scholar 

  • Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG, Proud CG (2003) The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol 23:5692–5705

    Article  PubMed  CAS  Google Scholar 

  • Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D, Diaz JJ (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100–4109

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18:2988–2996

    Article  PubMed  CAS  Google Scholar 

  • Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM (2009) Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23:928–938

    Article  PubMed  CAS  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  • Scott M, Boisvert FM, Vieyra D, Johnston RN, Bazett-Jones DP, Riabowol K (2001) UV induces nucleolar translocation of ING1 through two distinct nucleolar targeting sequences. Nucleic Acids Res 29:2052–2058

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  PubMed  CAS  Google Scholar 

  • Shechter D, Costanzo V, Gautier J (2004) Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 3:901–908

    Article  CAS  Google Scholar 

  • Shen HM, Tergaonkar V (2009) NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 14:348–363

    Article  PubMed  CAS  Google Scholar 

  • Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24:331–339

    Article  PubMed  CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Oren M, Levina E, Ben-Ze’ev A (2002) PML is a target gene of beta-catenin and plakoglobin, and coactivates beta-catenin-mediated transcription. Cancer Res 62:5947–5954

    PubMed  CAS  Google Scholar 

  • Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 112(Pt 19):3259–3268

    PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31

    Article  PubMed  CAS  Google Scholar 

  • Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455:813–817

    Article  PubMed  CAS  Google Scholar 

  • Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331:834–842

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (2001) Nuclear domains. J Cell Sci 114:2891–2893

    PubMed  CAS  Google Scholar 

  • Stagno D’Alcontres M, Mendez-Bermudez A, Foxon JL, Royle NJ, Salomoni P (2007) Lack of TRF2 in ALT cells causes PML-dependent p53 activation and loss of telomeric DNA. J Cell Biol 179:855–867

    Article  PubMed  CAS  Google Scholar 

  • Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27:2661–2675

    Article  PubMed  CAS  Google Scholar 

  • Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI, Moss T (2006) Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol Cell 21:629–639

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Guldner HH, Szostecki C, Grotzinger T, Will H (1995) Two nuclear dot-associated proteins, PML and Sp100, are often co-autoimmunogenic in patients with primary biliary cirrhosis. Scand J Immunol 42:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Jensen K, Will H (1997) Evidence for covalent modification of the nuclear ­dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 139:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Storck S, Shukla M, Dimitrov S, Bouvet P (2007) Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 41:125–144

    Article  PubMed  Google Scholar 

  • Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, Del Sal G, Levrero M, Blandino G (2005) The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 18:447–459

    Article  PubMed  CAS  Google Scholar 

  • Strezoska Z, Pestov DG, Lau LF (2000) Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 20:5516–5528

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Kuo ML, Roussel MF, Sherr CJ (2003) Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11:415–424

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Tu X, Prisco M, Wu A, Casiburi I, Baserga R (2003) Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol 17:472–486

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu H, Subramony SH, Hebert MD (2005) Interactions between coilin and PIASy partially link Cajal bodies to PML bodies. J Cell Sci 118:4995–5003

    Article  PubMed  CAS  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24:841–851

    Article  PubMed  CAS  Google Scholar 

  • Szostecki C, Guldner HH, Netter HJ, Will H (1990) Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis. J Immunol 145:4338–4347

    PubMed  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123:49–63

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X (2006) Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8:855–862

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546

    Article  PubMed  CAS  Google Scholar 

  • Theimer CA, Jady BE, Chim N, Richard P, Breece KE, Kiss T, Feigon J (2007) Structural and functional characterization of human telomerase RNA processing and cajal body localization signals. Mol Cell 27:869–881

    Article  PubMed  CAS  Google Scholar 

  • Thomas G (2000) An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell Biol 2:E71–E72

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Chen B, Liu X 2009. Telomere and telomerase as targets for Cancer therapy. Appl Biochem Biotechnol

    Google Scholar 

  • Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, Terns MP (2008) Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell 19:3793–3800

    Article  PubMed  CAS  Google Scholar 

  • Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459:1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Tran H, Brunet A, Griffith EC, Greenberg ME (2003) The many forks in FOXO’s road. Sci STKE 2003:RE5

    Google Scholar 

  • Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66:1858–1867

    Article  PubMed  CAS  Google Scholar 

  • Trere D (2000) AgNOR staining and quantification. Micron 31:127–131

    Article  PubMed  CAS  Google Scholar 

  • Trere D, Ceccarelli C, Montanaro L, Tosti E, Derenzini M (2004) Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem 52:1601–1607

    Article  PubMed  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318:1402–1407

    Article  PubMed  CAS  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441:523–527

    Article  PubMed  CAS  Google Scholar 

  • Tu X, Batta P, Innocent N, Prisco M, Casaburi I, Belletti B, Baserga R (2002) Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J Biol Chem 277:44357–44365

    Article  PubMed  CAS  Google Scholar 

  • Van Holde KE, Allen JR, Tatchell K, Weischet WO, Lohr D (1980) DNA-histone interactions in nucleosomes. Biophys J 32:271–282

    Article  PubMed  Google Scholar 

  • Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Grummt I (2001) Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc Natl Acad Sci U S A 98:13631–13636

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Hoffmann M, Grummt I (1999) Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. Embo J 18:1891–1899

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Schafer K, Grummt I (1997) Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol Cell Biol 17:4230–4237

    PubMed  CAS  Google Scholar 

  • Voit R, Schnapp A, Kuhn A, Rosenbauer H, Hirschmann P, Stunnenberg HG, Grummt I (1992) The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. Embo J 11:2211–2218

    PubMed  CAS  Google Scholar 

  • Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC, Thomas G (2000) Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ, Chen J (2005) MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. Embo J 24:3279–3290

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Politz JC, Pederson T, Huang S (2003) RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 14:2425–2435

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP (1998a) Role of PML in cell growth and the retinoic acid pathway. Science 279:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998b) PML is essential for multiple apoptotic pathways. Nat Genet 20:266–272

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–2515

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26

    Article  PubMed  CAS  Google Scholar 

  • Wong JM, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4:731–736

    Article  PubMed  CAS  Google Scholar 

  • Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM (2006) The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312:3443–3457

    Article  PubMed  CAS  Google Scholar 

  • Wu A, Tu X, Prisco M, Baserga R (2005) Regulation of upstream binding factor 1 activity by insulin-like growth factor I receptor signaling. J Biol Chem 280:2863–2872

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Lee WH, Chen PL (2000) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem 275:30618–30622

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Hu H, Lan J, Emenari C, Wang Z, Chang KS, Huang H, Yao X (2009) PML3 Orchestrates the nuclear dynamics and function of TIP60. J Biol Chem 284:8747–8759

    Article  PubMed  CAS  Google Scholar 

  • Wu WS, Xu ZX, Hittelman WN, Salomoni P, Pandolfi PP, Chang KS (2003) Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem 278:12294–12304

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Scott F, Fierke CA, Engelke DR (2002) Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Ann Rev Biochem 71:165–189

    Article  PubMed  CAS  Google Scholar 

  • Xu ZX, Timanova-Atanasova A, Zhao RX, Chang KS (2003) PML colocalizes with and stabilizes the DNA damage response protein TopBP1. Mol Cell Biol 23:4247–4256

    Article  PubMed  CAS  Google Scholar 

  • Xu ZX, Zhao RX, Ding T, Tran TT, Zhang W, Pandolfi PP, Chang KS (2004) Promyelocytic leukemia protein 4 induces apoptosis by inhibition of survivin expression. J Biol Chem 279:1838–1844

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, Watanabe M, Sekine I, Yamashita S, Suzuki K (2008) Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA Repair (Amst) 7:405–417

    Article  CAS  Google Scholar 

  • Yang S, Jeong JH, Brown AL, Lee CH, Pandolfi PP, Chung JH, Kim MK (2006) Promyelocytic leukemia activates Chk2 by mediating Chk2 autophosphorylation. J Biol Chem 281:26645–26654

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Kuo C, Bisi JE, Kim MK (2002) PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4:865–870

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Khosravi-Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Yankiwski V, Marciniak RA, Guarente L, Neff NF (2000) Nuclear structure in normal and Bloom syndrome cells. Proc Natl Acad Sci U S A 97:5214–5219

    Article  PubMed  CAS  Google Scholar 

  • Yates KE, Korbel GA, Shtutman M, Roninson IB, DiMaio D (2008) Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 7:609–621

    Article  PubMed  CAS  Google Scholar 

  • Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    PubMed  CAS  Google Scholar 

  • Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, Pardo O, Crook T, Mein CA, Lemoine NR, Jones LJ, Basu S (2008) Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 15:1752–1759

    Article  PubMed  CAS  Google Scholar 

  • Zhai W, Comai L (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20:5930–5938

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Hu CM, Yuan YS, He CH, Zhao Q, Liu NZ (2008) Expression of Mina53 and its significance in gastric carcinoma. Int J Biol Markers 23:83–88

    PubMed  CAS  Google Scholar 

  • Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Hemmerich P, Grosse F (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J Cell Sci 117:3935–3945

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Yuan X, Frodin M, Grummt I (2003) ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 11:405–413

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18:7941–7947

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000a) Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752

    PubMed  CAS  Google Scholar 

  • Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP (2000b) Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med 191:631–640

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Lallemand-Breitenbach V, de The H (2001) Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene 20:7257–7265

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Luo Z, Li Y, Ni C, Li H, Zhu M (2009) Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatology 49:504–512

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G.D. is the Cameron Scientist in Cancer Biology of the Dalhousie Cancer Research Program and a Canadian Institutes of Health Research (CIHR) New Investigator. This work is funded in part by operating grants from Nova Scotia Health Research Foundation (NSHRF) (2007–3348) and the CIHR (MOP-84260). K.L.C. is supported by postdoctoral fellowships from the NSHRF and the Killam Trusts. We would also like to apologize to those colleagues whom we could only cite indirectly in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Dellaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Cann, K.L., Huang, S., Dellaire, G. (2011). Nuclear Subdomains and Cancer. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_1

Download citation

Publish with us

Policies and ethics