Skip to main content

Deformation Waves in Microstructured Materials: Theory and Numerics

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances of Acoustic Waves in Solids

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 26))

  • 1479 Accesses

Abstract

A linear model of the microstructured continuum based on Mindlin theory is adopted which can be represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are represented in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. Results of direct numerical simulations of wave propagation in periodic medium are compared with similar results for the continuous media with the modelled microstructure. It is shown that the proper choice of material constants should be made to match the results obtained by both approaches

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maugin, G.A.: Nonlinear Waves in Elastic Crystals, Oxford University Press (1999).

    Google Scholar 

  2. Sun, C.T., Achenbach, J.D., Herrmann, G.: Continuum theory for a laminated medium. J. Appl. Mech. 35 467–475 (1968).

    Google Scholar 

  3. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam (1993).

    Google Scholar 

  4. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal 16 51-78 (1964).

    Article  Google Scholar 

  5. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of micro-elastic solids II. Int. J. Eng. Sci. 2 189-203 (1964).

    Article  Google Scholar 

  6. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75 723-738 (2006).

    Article  Google Scholar 

  7. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33 235-254 (2008).

    Article  Google Scholar 

  8. Nowacki, W.: Thermoelasticity. Pergamon/PWN, Oxford/Warszawa (1962).

    Google Scholar 

  9. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15 173-192 (1990).

    Article  Google Scholar 

  10. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85 4127-4141 (2005).

    Article  Google Scholar 

  11. Engelbrecht, J., Cermelli, P., Pastrone, F.: Wave hierarchy in microstructured solids. In: Maugin, G.A. (ed.) Geometry, Continua and Microstructure, pp. 99-111. Hermann Publ., Paris (1999).

    Google Scholar 

  12. Effective Computational Methods for Wave Propagation. Kampanis, N. A., Dougalis, V.A., Ekaterinaris, J.A. (eds.), Chapman & Hall/CRC, Boca Raton (2008).

    Google Scholar 

  13. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).

    Book  Google Scholar 

  14. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008).

    Book  Google Scholar 

  15. Lakes, R.S.: Experimental method for study of Cosserat elastic solids and other generalized continua. In: Mühlhaus, H.-B. (ed.) Continuum Models for Materials with Microstructure, pp.1-22. Wiley, New York (1995).

    Google Scholar 

  16. Berezovski, A., Berezovski, M. and Engelbrecht, J.: Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mater. Sci. Engng. A 418 364-369 (2006).

    Article  Google Scholar 

  17. Janno, J., Engelbrecht J.: An inverse solitary wave problem related to microstructural materials. Inverse Problems. 21 2019-2034 (2005).

    Article  Google Scholar 

  18. Engelbrecht, J. Berezovski, A., Salupere, A.: Nonlinear deformation waves in solids and dispersion. Wave Motion. 44 493-500 (2007).

    Article  Google Scholar 

  19. Pastrone, F., Cermelli, P. and Porubov, A.: Nonlinear waves in 1-D solids with microstructure. Mater. Phys. Mech. 7 9-16 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jüri Engelbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Engelbrecht, J., Berezovski, A., Berezovski, M. (2010). Deformation Waves in Microstructured Materials: Theory and Numerics. In: Wu, TT., Ma, CC. (eds) IUTAM Symposium on Recent Advances of Acoustic Waves in Solids. IUTAM Bookseries, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9893-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9893-1_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9892-4

  • Online ISBN: 978-90-481-9893-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics