Skip to main content

Versatile Phononic Slabs

  • Conference paper
  • First Online:
  • 1477 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 26))

Abstract

Phononic slabs of an fcc phononic crystal consisting of close-packed (glued) rubber spheres in air, under the influence of mild dissipation in rubber, exhibit large absolute transmission gaps. Proper size variation of the spheres in a sequence of crystal slabs can shift and enlarge the frequency gap readily to comply with a variety of filtering needs in a phononic application. The aspects of such a versatile phononic slab are presented in a realistic theoretical approach, by means of the layer multiple-scattering method developed for phononic crystals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modinos, A., Stefanou, N., Psarobas, I.E., Yannopapas, V.: On wave propagation in inhomogeneous systems. Physica B 296 167-173 (2001).

    Article  Google Scholar 

  2. Sigalas, M., Kushwaha, M.S., Economou, E., Kafesaki, M., Psarobas, I.E., Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220 765-809 (2005).

    Article  Google Scholar 

  3. Qiu, Y., Leung, K.M., Carin, L., Kralj, D.: Dispersion-curves and transmission spectra of a 2-dimensional photonic band-gap crystal theory and experiment. J. Appl. Phys. 77 3631-3636 (1995).

    Article  Google Scholar 

  4. Sainidou, R., Stefanou, N., Psarobas, I.E., Modinos, A.: A layer-multiple-scattering method for phononic crystals and heterostructures of such. Comput. Phys. Commun. 166 197-240 (2005).

    Article  Google Scholar 

  5. Sainidou, R., Stefanou, N., Modinos, A.: Formation of absolute frequency gaps in three-dimensional solid phononic crystals. Phys. Rev. B 66 212301 (2002).

    Google Scholar 

  6. Psarobas, I.E.: Viscoelastic response of sonic band-gap materials. Phys. Rev. B 64 012303 (2001).

    Google Scholar 

  7. Ayres, V.M., Gaunaurd, G.C.: Acoustic-resonance scattering by viscoelastic objects. J. Acoust. Soc. Am. 81 301 (1987).

    Article  Google Scholar 

  8. Zimmerman, C., Stern, M.: Scattering of plane compressional waves by spherical inclusions in a poroelastic medium. J. Acoust. Soc. Am. 94 527 (1993).

    Article  Google Scholar 

  9. Berryman, J.C.: Effective conductivity by fluid analogy for a porous insulator filled with a conductor. Phys. Rev. B 27 7789 (1983).

    Google Scholar 

  10. Merheb, B., Deymier, P.A., Jain, M., Aloshyna-Lesuffleur, M., Mohanty, S., Berker, A., Greger, R.W.: Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study. J. Appl. Phys. 104 064913 (2008).

    Article  Google Scholar 

  11. Kushwaha, M.S., Djafari-Rouhani, D., Dobrzynski, L., Vasseur, J.O.: Sonic stop-bands for cubic arrays of rigid inclusions in air. Eur. Phys. J. B 3 155 (1998).

    Google Scholar 

  12. Psarobas, I.E., Sigalas, M.M.: Elastic band gaps in a fcc lattice of mercury spheres in aluminum. Phys. Rev. B 66 052302 (2002).

    Google Scholar 

  13. Psarobas, I.E., Stefanou, N., Modinos, A.: Phononic crystals with planar defects. Phys. Rev. B 62 5536-5540 (2000).

    Google Scholar 

  14. Sainidou, R., Stefanou, N., Modinos, A.: Widening of Phononic Transmission Gaps via Anderson Localization. Phys. Rev. Lett. 94 205503 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Psarobas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Psarobas, I.E. (2010). Versatile Phononic Slabs. In: Wu, TT., Ma, CC. (eds) IUTAM Symposium on Recent Advances of Acoustic Waves in Solids. IUTAM Bookseries, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9893-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9893-1_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9892-4

  • Online ISBN: 978-90-481-9893-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics