Skip to main content

Gravitational Potential of a Massive Disk. Dynamics Around an Annular Disk

  • Chapter
Nonlinear Science and Complexity

Abstract

This article studies the main features of the dynamics around an annular disk. The first part addresses the difficulties finding a usable expression of the gravitational potential of a massive disk that will be used later on to define the differential equations of motion of our dynamical system.

The second part of the article describes the dynamics of a particle orbiting a massive annular disk by means of a description of the main families of periodic orbits, their bifurcations and linear stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.T. Krough, E.W. Ng, W.V. Snyder, The gravitational field of a disk. Celest. Mech. 26, 395–405 (1982)

    Article  Google Scholar 

  2. H. Lass, L. Blitzer, The gravitational potential due to uniform disks and rings. Celest. Mech. 30, 225–228 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, New York, 1971), xvi+358

    Book  MATH  Google Scholar 

  4. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7, 78–90 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. B.C. Carlson, Computing elliptic integrals by duplication. Numer. Math. 33, 1–16 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Scheeres, Satellite dynamics about asteroids: computing Poincaré maps for the general case, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995). NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., vol. 533 (Kluwer Academic, Dordrecht, 1999), pp. 554–557

    Chapter  Google Scholar 

  7. A. Deprit, J. Henrard, Natural families of periodic orbits. Astron. J. 72, 158–172 (1967)

    Article  Google Scholar 

  8. M. Hénon, Exploration numérique du problème restreint. Ii Masses égales, stabilité des orbites périodiques, Ann. Astrophys. 28, 992 (1965)

    Google Scholar 

Download references

Acknowledgements

This paper has been supported by the Spanish Ministry of Education and Science, Project AYAP2008-05572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tresaco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tresaco, E., Elipe, A., Riaguas, A. (2011). Gravitational Potential of a Massive Disk. Dynamics Around an Annular Disk. In: Machado, J., Luo, A., Barbosa, R., Silva, M., Figueiredo, L. (eds) Nonlinear Science and Complexity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9884-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9884-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9883-2

  • Online ISBN: 978-90-481-9884-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics