Skip to main content

In Vivo Single-Molecule Microscopy Using the Zebrafish Model System

  • Chapter
  • First Online:
  • 1091 Accesses

Abstract

In recent years, several groups have succeeded in extending single-molecule microscopy technology to the level of a living vertebrate organism using the zebrafish embryo as a model system. In this chapter an overview will be presented of these studies and three lines of research will be discussed. First, work will be presented in which fluorescent proteins have been imaged at the single-molecule level in the epidermis of zebrafish embryos using total internal reflection fluorescence (TIRF) microscopy. Second, investigations will be presented in which individual quantum dots have been imaged in zebrafish embryos by selective plane illumination microscopy (SPIM). Third, studies will be discussed in which fluorescence correlation spectroscopy (FCS) has been applied to fluorescent proteins in zebrafish embryos. All three research lines show discrepancies between results obtained in zebrafish embryos and data obtained in cell cultures, illustrating the relevance of performing these studies in an in vivo model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CCD:

charge-coupled device

CHO:

Chinese hamster ovary

dpf:

days post fertilization

eYFP:

enhanced yellow fluorescent protein

FCS:

fluorescence correlation spectroscopy

Fgf:

fibroblast growth factor

GFP:

green fluorescent protein

hpf:

hours post fertilization

HSPG:

heparan sulphate proteoglycan

IQGAP1:

IQ motif containing GTPase activating protein 1

LCK:

lymphocyte-specific protein tyrosine kinase

mRFP:

monomeric red fluorescent protein

PTU:

phenylthiourea

QD:

quantum dot

SPIM:

selective plane illumination microscopy

SW-FCCS:

Single Wavelength Fluorescence Cross-Correlation Spectroscopy

TIRF:

total internal reflection fluorescence

TMR:

tetramethylrhodamine

References

  1. Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89

    Article  CAS  PubMed  Google Scholar 

  2. Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, Raz E (2005) Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 118:4027–4038

    Article  CAS  PubMed  Google Scholar 

  3. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  PubMed  Google Scholar 

  4. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433–443

    Article  CAS  PubMed  Google Scholar 

  5. Friedrich M, Nozadze R, Gan Q, Zelman-Femiak M, Ermolayev V, Wagner TU, Harms GS (2009) Detection of single quantum dots in model organisms with sheet illumination microscopy. Biochem Biophys Res Commun 390:722–727

    Article  CAS  PubMed  Google Scholar 

  6. Grunwald D, Martin RM, Buschmann V, Bazett-Jones DP, Leonhardt H, Kubitscheck U, Cardoso MC (2008) Probing intranuclear environments at the single-molecule level. Biophys J 94:2847–2858

    Article  PubMed  Google Scholar 

  7. Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10:673–680

    Article  CAS  PubMed  Google Scholar 

  8. Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81:2639–2646

    Article  CAS  PubMed  Google Scholar 

  9. Harms GS, Cognet L, Lommerse PH, Blab GA, Schmidt T (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 80:2396–2408

    Article  CAS  PubMed  Google Scholar 

  10. Henion PD, Raible DW, Beattie CE, Stoesser KL, Weston JA, Eisen JS (1996) Screen for mutations affecting development of Zebrafish neural crest. Dev Genet 18:11–17

    Article  CAS  PubMed  Google Scholar 

  11. Hsu CH, Wen ZH, Lin CS, Chakraborty C (2007) The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 4:111–120

    Article  CAS  PubMed  Google Scholar 

  12. Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  CAS  PubMed  Google Scholar 

  13. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  CAS  PubMed  Google Scholar 

  14. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    Article  CAS  PubMed  Google Scholar 

  15. Ike H, Kosugi A, Kato A, Iino R, Hirano H, Fujiwara T, Ritchie K, Kusumi A (2003) Mechanism of Lck recruitment to the T-cell receptor cluster as studied by single-molecule-fluorescence video imaging. Chemphyschem 4:620–626

    Article  PubMed  Google Scholar 

  16. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  CAS  PubMed  Google Scholar 

  17. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  CAS  PubMed  Google Scholar 

  18. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  19. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T (2005) Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin Immunol 17:3–21

    Article  CAS  PubMed  Google Scholar 

  20. Levraud JP, Colucci-Guyon E, Redd MJ, Lutfalla G, Herbomel P (2008) In vivo analysis of zebrafish innate immunity. Methods Mol Biol 415:337–363

    Article  CAS  PubMed  Google Scholar 

  21. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  PubMed  Google Scholar 

  22. Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    CAS  PubMed  Google Scholar 

  23. Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616

    Article  CAS  PubMed  Google Scholar 

  24. Lommerse PH, Snaar-Jagalska BE, Spaink HP, Schmidt T (2005) Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118:1799–1809

    Article  CAS  PubMed  Google Scholar 

  25. Lommerse PH, Vastenhoud K, Pirinen NJ, Magee AI, Spaink HP, Schmidt T (2006) Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. Biophys J 91:1090–1097

    Article  CAS  PubMed  Google Scholar 

  26. Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7:254–260

    Article  CAS  PubMed  Google Scholar 

  27. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271: 15292–15297

    Article  CAS  PubMed  Google Scholar 

  28. Pan X, Shi X, Korzh V, Yu H, Wohland T (2009) Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements. J Biomed Opt 14:024049

    Article  PubMed  Google Scholar 

  29. Pan X, Yu H, Shi X, Korzh V, Wohland T (2007) Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. J Biomed Opt 12:014034

    Article  PubMed  Google Scholar 

  30. Pauls S, Geldmacher-Voss B, Campos-Ortega JA (2001) A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev Genes Evol 211:603–610

    Article  CAS  PubMed  Google Scholar 

  31. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  CAS  PubMed  Google Scholar 

  32. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108:3976–3978

    Article  CAS  PubMed  Google Scholar 

  33. Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234:670–681

    Article  CAS  PubMed  Google Scholar 

  34. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924

    Article  CAS  PubMed  Google Scholar 

  35. Ries J, Yu SR, Burkhardt M, Brand M, Schwille P (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643–645

    Article  CAS  PubMed  Google Scholar 

  36. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  CAS  PubMed  Google Scholar 

  37. Schaaf MJ, Koopmans WJ, Meckel T, van Noort J, Snaar-Jagalska BE, Schmidt TS, Spaink HP (2009) Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 97:1206–1214

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci USA 93:2926–2929

    Article  CAS  PubMed  Google Scholar 

  39. Schutz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  CAS  PubMed  Google Scholar 

  40. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  CAS  PubMed  Google Scholar 

  41. Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T (2009a) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97:678–686

    Article  CAS  PubMed  Google Scholar 

  42. Shi X, Teo LS, Pan X, Chong SW, Kraut R, Korzh V, Wohland T (2009b) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238:3156–3167

    Article  CAS  PubMed  Google Scholar 

  43. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  CAS  PubMed  Google Scholar 

  44. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379

    Article  CAS  PubMed  Google Scholar 

  45. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453

    Article  CAS  PubMed  Google Scholar 

  46. Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Scholpp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel J. M. Schaaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Schaaf, M.J.M., Schmidt, T.S. (2011). In Vivo Single-Molecule Microscopy Using the Zebrafish Model System. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_9

Download citation

Publish with us

Policies and ethics