Skip to main content

Immobilizing Channel Molecules in Artificial Lipid Bilayers for Simultaneous Electrical and Optical Single Channel Recordings

  • Chapter
  • First Online:
Book cover Cell Signaling Reactions

Abstract

There has been much interest in imaging single drug bindings to ion channel proteins while simultaneously recording single channel current. We developed an experimental apparatus for simultaneous optical and electrical measurement of single channel proteins by combining the single molecule imaging technique and the artificial bilayer technique. However, one major problem is that single molecule imaging of drug bindings is limited by the innate thermal diffusion of channel proteins in the artificial bilayer. Therefore, immobilizing channel proteins in the bilayers is imperative for stable measurements of channel-drug interactions. For future studies on channel-drug interactions, we describe here three different methods for simultaneous optical and electrical observation of single channels in which channel proteins are immobilized. (i) Membrane binding protein annexin V reduces the lateral diffusion of single channel proteins in a concentration-dependent manner. (ii) Channel proteins are immobilized by anchorage through a polyethylene glycol (PEG) molecule to the glass substrate. (iii) Channels immobilized on a gel bead can be directly incorporated into artificial bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanagida T, Ishii Y (2008) Single molecule dynamics in life science. Wiley-VCH

    Google Scholar 

  2. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol Suppl:SS1–SS5

    PubMed  Google Scholar 

  3. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  4. Mueller P, Rudin DO (1968) Resting and action potentials in experimental bimolecular lipid membranes. J Theor Biol 18:222–258

    Article  CAS  PubMed  Google Scholar 

  5. Ide T, Yanagida T (1999) An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem Biophys Res Commun 265:595–599

    Article  CAS  PubMed  Google Scholar 

  6. Favre I, Sun YM, Moczydlowski E (1999) Reconstitution of native and cloned channels into planar bilayers. Method Enzymol 294:287–304

    Article  CAS  Google Scholar 

  7. Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci USA 93:2926–2929

    Article  CAS  PubMed  Google Scholar 

  8. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  CAS  PubMed  Google Scholar 

  9. Ide T, Takeuchi Y, Yanagida T (2002) Development of an experimental apparatus for simultaneous observation of optical and electrical signals from single 1on channels. Single Molecules 3:33–42

    Article  CAS  Google Scholar 

  10. Ide T, Takeuchi Y, Aoki T, Yanagida T (2002) Simultaneous optical and electrical recording of a single ion-channel. Jpn J Physiol 52:429–434

    Article  CAS  PubMed  Google Scholar 

  11. Ichikawa T, Aoki T, Takeuchi Y, Yanagida T, Ide T (2006) Immobilizing single lipid and channel molecules in artificial lipid bilayers with annexin A5. Langmuir 22:6302–6307

    Article  CAS  PubMed  Google Scholar 

  12. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    CAS  PubMed  Google Scholar 

  13. Rescher U, Gerke V (2004) Annexins – unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Article  CAS  PubMed  Google Scholar 

  14. Swairjo MA, Seaton BA (1994) Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct 23:193–213

    Article  CAS  PubMed  Google Scholar 

  15. Saurel O, Cezanne L, Milon A, Tocanne JF, Demange P (1998) Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study. Biochemistry 37:1403–1410

    Article  CAS  PubMed  Google Scholar 

  16. Cezanne L, Lopez A, Loste F, Parnaud G, Saurel O, Demange P, Tocanne JF (1999) Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers. Biochemistry 38:2779–2786

    Article  CAS  PubMed  Google Scholar 

  17. Oling F, Bergsma-Schutter W, Brisson A (2001) Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals. J Struct Biol 133:55–63

    Article  CAS  PubMed  Google Scholar 

  18. Mo Y, Campos B, Mealy TR, Commodore L, Head JF, Dedman JR, Seaton BA (2003) Interfacial basic cluster in annexin V couples phospholipid binding and trimer formation on membrane surfaces. J Biol Chem 278:2437–2443

    Article  CAS  PubMed  Google Scholar 

  19. Richter RP, Him JL, Tessier B, Tessier C, Brisson AR (2005) On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Biophys J 89:3372–3385

    Article  CAS  PubMed  Google Scholar 

  20. Peng S, Publicover NG, Airey JA, Hall JE, Haigler HT, Jiang D, Chen SR, Sutko JL (2004) Diffusion of single cardiac ryanodine receptors in lipid bilayers is decreased by annexin 12. Biophys J 86:145–151

    Article  CAS  PubMed  Google Scholar 

  21. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  CAS  PubMed  Google Scholar 

  22. Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106

    CAS  PubMed  Google Scholar 

  23. Isas JM, Cartailler JP, Sokolov Y, Patel DR, Langen R, Luecke H, Hall JE, Haigler HT (2000) Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry 39:3015–3022

    Article  CAS  PubMed  Google Scholar 

  24. Ide T, Takeuchi Y, Noji H, Tabata KV (2009) Simultaneous optical and electrical single channel recordings on a PEG glass. Langmuir 26(11):8540–8543

    Article  Google Scholar 

  25. Magleby KL (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121:81–96

    Article  CAS  PubMed  Google Scholar 

  26. Hirano M, Takeuchi Y, Aoki T, Yanagida T, Ide T (2009) Current recordings of ion channel proteins immobilized on resin beads. Anal Chem 81:3151–3154

    Article  CAS  PubMed  Google Scholar 

  27. Cordero-Morales JF, Cuello LG, Perozo E (2006) Voltage-dependent gating at the KcsA selectivity filter. Nat Struct Mol Biol 13:319–322

    Article  CAS  PubMed  Google Scholar 

  28. LeMasurier M, Heginbotham L, Miller C (2001) KcsA: it’s a potassium channel. J Gen Physiol 118:303–314

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  30. Zadek B, Nimigean CM (2006) Calcium-dependent gating of MthK, a prokaryotic potassium channel. J Gen Physiol 127:673–685

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Berke I, Chen L, Jiang Y (2007) Gating and inward rectifying properties of the MthK K+channel with and without the gating ring. J Gen Physiol 129:109–120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Ide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Ide, T., Hirano, M., Ichikawa, T. (2011). Immobilizing Channel Molecules in Artificial Lipid Bilayers for Simultaneous Electrical and Optical Single Channel Recordings. In: Sako, Y., Ueda, M. (eds) Cell Signaling Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9864-1_5

Download citation

Publish with us

Policies and ethics