Skip to main content

Geomagnetic Indices

  • Chapter
  • First Online:

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 5))

Abstract

Geomagnetic indices are a measure of geomagnetic activity, which is a signature of the response of the Earth magnetosphere and ionosphere to solar forcing. They play a significant role in describing the magnetic configuration of the Earth’s ionized environment. In the second half of the twentieth century, they have become a key parameter in Solar Terrestrial studies; in the past 15 years, they have become a key parameter in Space Weather, being commonly used to detect and describe Space Weather events. The objective of this chapter is to contribute to a better understanding of the meaning, usefulness, potential and limitations of geomagnetic indices. Standard geomagnetic indices, as well as some newly introduced quantities are considered. We present for each index, or each index family, a short but complete description of the derivation process and a review of the information that the index may provide on the dynamics of, and on the physical processes that take place in the Earth’s ionized environment.

To the observers

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The C figure is the first geomagnetic index defined at an international level: each observer assigned a certain number (0, 1, or 2) to each Greenwich day, by judging the relative degree of disturbance of the magnetogram (resp., quiet, moderately disturbed, or disturbed). The planetary or international magnetic character figure C i was defined as the mean of the C figures supplied by all the cooperating observatories.

  2. 2.

    A sfe, or magnetic crochet is the sudden perturbation in geomagnetic elements that follows the eruption of a solar flare. sfe events occur when a solar flare points towards the Earth; they are confined mostly to the sunlit hemisphere and are associated with currents that flow primarily in the ionosphere. They are due to the extra ionization produced by X ray and EUV flare radiation. For more details, the reader is referred to, e.g., Curto et al. (1994a, b) and references therein. sfe events are usually noticed on magnetograms at low and mid-latitude stations as an increase in the intensity of the S R (see Section 8.2.2). Lists of sfe events are compiled by the Service of Rapid Variations on the basis of reports made by observatories from morphological inspection of their magnetograms.

  3. 3.

    In the GSM frame, the x-axis is represented by the Earth-Sun line, directed positive towards the Sun. The y-axis is defined as the cross product of the GSM x-axis and the magnetic dipole axis, directed positive towards dusk. The z-axis is defined as the cross product of the x- and y-axes. The magnetic dipole axis lies within the xz plane.

  4. 4.

    The S R corresponds to the curve observed during an individual magnetic quiet day; the S q variation is deduced from S R curves by averaging them over a given time interval, during which it thus represents the most likely S R variation.

  5. 5.

    The Cowling conductivity is then a combination of the Hall and Pedersen conductivities which arise in magnetized collisional plasma, such as the ionosphere.

  6. 6.

    The PCN indices were recalculated once the software bug was corrected. The index is available in both 1 min and 15 min resolution from 1975 until the present, from:

    http://web.dmi.dk/projects/wdcc1/pcn/pcn.html

  7. 7.

    The PCS index is available (for registered users) in 15 min resolution from 1978 to Oct. 1992, and in 1 min resolution from Nov. 1992 until the present, from:

    http://www.aari.nw.ru/clgmi/geophys/pc_req.asp

  8. 8.

    The full citation is deliberate here so the reader is aware that the papers are by the same authors.

  9. 9.

    Bz is the IMF North-South component, V sw is the solar wind velocity.

  10. 10.

    Reference AE values are available on-line at http://wdc.kugi.kyoto-u.ac.jp/ and at http://isgi.latmos.ipsl.fr

  11. 11.

    Bz is the IMF North-South component, Vsw is the solar wind velocity.

  12. 12.

    http://wdc.kugi.kyoto-u.ac.jp/ae_realtime

  13. 13.

    The morphological rules are also published in Menvielle et al. (1995)

  14. 14.

    Centred dipole coordinates are obtained by approximating the main field of the Earth by a centred dipole (that is, the degree one terms of a spherical analysis of this field); corrected geomagnetic coordinates differ from the former by taking higher-order spherical harmonic terms of the main field into account.

  15. 15.

    For the sake of coherency with the Bartels’ definition, one takes L9 = 500 nT at 50° of corrected geomagnetic latitude.

  16. 16.

    Niemegk is a typical subauroral station

  17. 17.

    K p and ap: http://www.gfz-potsdam.de/pb2/pb23/Niemegk/en/index.html am, an, as, aa, and aλ: http://isgi.latmos.ipsl.fr

  18. 18.

    Reference Kp and ap values are available on-line at http://www.gfz-potsdam.de/pb2/pb23/Niemegk/en/index.html and at http://isgi.latmos.ipsl.fr/

  19. 19.

    Reference am, an, and as values are available on-line at http://isgi.latmos.ipsl.fr

  20. 20.

    The conversion tables are based on the Niemegk scale: “each class is divided into ten equal parts, the tenth subclass being on either side of each limit between subsequent classes. (…) Special treatment is applied for Kj = 0.0 to 1.5: both classes K = 0 and 1 are considered as a single class, which is divided in 15 equal parts.” (Mayaud, 1980, p. 56).

  21. 21.

    Reference aλ values are available on-line at http://isgi.latmos.ipsl.fr

  22. 22.

    See note 1.

  23. 23.

    Reference aa values are available on-line at http://isgi.latmos.ipsl.fr

  24. 24.

    see Section 8.2.

  25. 25.

    The GSM coordinates are deduced from the GSEQ ones by a simple rotation around their common x axis, which points from Earth to the Sun.

  26. 26.

    Reference Dst values are available on-line at http://wdc.kugi.kyoto-u.ac.jp/ and at http://isgi.latmos.ipsl.fr

  27. 27.

    Reference SYM and ASY values are available on-line at http://swdcwww.kugi.kyoto-u.ac.jp/

  28. 28.

    Reference lists of sscs are available on-line at http://www.obsebre.es and at http://isgi.latmos.ipsl.fr

  29. 29.

    Geomagnetic pulsations are quasi-periodic variations of the Earth’s magnetic field which are classified by their structure and frequency

  30. 30.

    http://s-cubed.info

  31. 31.

    Digital data of the ULF index are available from:

    http://ftp://space.augsburg.edu/MACCS//ULF_Index/

Abbreviations

Bx:

IMF component along x axis, directed positive towards the Sun

By:

IMF component along the y axis, directed positive towards dusk

Bz:

IMF component along the z axis, directed positive towards north

CME:

Coronal Mass Ejection

D:

Declination: angle between the local magnetic field and the geographic north; D is positive when the geomagnetic north is east of geographic north.

DP-1:

Disturbance Polar of type 1 current

DP-2:

Disturbance Polar of type 2 current

GIC:

Ground Induced Currents

GMLAT:

Geomagnetic Latitude

GSEQ:

Geocentric Solar Equatorial coordinate system (x axis is from Earth to Sun, y axis is parallel to solar equatorial plane, z axis is positive northward)

GSM:

Geocentric Solar Magnetospheric coordinate system (x axis is from Earth to Sun; z axis is northward in a plane containing the x axis and the geomagnetic dipole axis)

H:

geomagnetic field horizontal component along the local geomagnetic north direction, directed positive northward

IGY:

International Geophysical Year (July 1, 1957—Dec. 31, 1958)

IMF:

Interplanetary Magnetic Field

Intermagnet:

International Real-time Magnetic Observatory Network

LT:

Local Time

MLT:

Magnetic Local Time

RE :

Earth radius

rms:

root mean square

sfe:

solar flare effect

Sq:

Solar quiet variation

SR :

Solar Regular variation

ssc:

storm sudden commencement

ULF:

Ultra Low Frequency

UT:

Universal Time

X:

geomagnetic field horizontal component along the geographic north direction, directed positive northward

Y:

geomagnetic field horizontal component along the geographic east direction, directed positive eastward

Z:

geomagnetic field vertical component, directed positive downward

Institutions :

AARI:

Artic and Antarctic Research Institute, St Petersburg, Russia

DMI:

Danish Meteorological Institute, Kopenhagen, Denmark

GFZ:

GeoForschung Zentrum, Potsdam, Germany

IAGA:

International Association of Geomagnetism and Aeronomy

IATME:

International Association of Terrestrial Magnetism and Electricity

ISGI:

International Service of Geomagnetic Indices

IUGG:

International Union of Geophysics and Geodesy

LATMOS:

Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France

WDC-Kyoto:

World Data Center for Geomagnetism, Kyoto, Japan

References

  • Ahn B-H, Kroehl HW, Kamide Y, Kihn EA (2000a) Universal time variations of the auroral electrojet indices. J Geophys Res 267–275

    Google Scholar 

  • Ahn B-H, Kroehl HW, Kamide Y, Kihn EA (2000b) Seasonal and solar cycle variations of the auroral electrojet indices. J Atmos Solar-Terr Phys 62:1301–1310

    Google Scholar 

  • Akasofu S-I, Chapman S (1964) On the asymmetric development of magnetic storm field in low and middle latitudes. Planet Space Sci 12:607

    Google Scholar 

  • Akasofu S-I, Chapman S (1972) Solar terrestrial physics. Oxford University Press, Oxford

    Google Scholar 

  • Allen J.H, Kroehl HW (1975) Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80:3667–3677

    Google Scholar 

  • Bartels J (1940) Report on the numerical characterization of days, IATME Bull. I1, p. 27, International Union of Geodesy and Geophysics, Publ. Off., Paris.

    Google Scholar 

  • Bartels J (1949) The standardized index, Ks, and the planetary index, Kp, IATME Bulletin 12b, 97.

    Google Scholar 

  • Bartels J (1951) An attempt to standardize the daily international magnetic character figure, IATME Bull. 12e, p. 109, International Union of Geodesy. and Geophysics, Publ. Off., Paris.

    Google Scholar 

  • Bartels J, Veldkamp J (1954) International data on magnetic disturbances, fourth quarter, 1953. J Geophys Res 59:295

    Google Scholar 

  • Bartels J, Heck NH, Johnston HF (1939) The three-hour-range index measuring geomagnetic activity. J Geophys Res 44:411

    Google Scholar 

  • Bartels J, Heck NH, Johnston HF (1940) Geomagnetic three-hour-range indices for the years 1938 and 1939. J Geophys Res 45:309

    Google Scholar 

  • Baumjohann W, Kamide Y (1984) Hemispherical Joule heating and the AE indices. J Geophys Res 89 :383–388

    Google Scholar 

  • Berthelier A (1979) Étude des influences du vent solaire sur l’activité magn6tique terrestre, particulièrement aux hautes latitudes, doctorat d’etat, Univ. Pierre et Marie Curie

    Google Scholar 

  • Berthelier A (1993) The K-derived planetary indices: derivation, meaning and uses in solar terrestrial physics. In: Hruska J et al (eds) STPW-IV proceedings, vol 3. US Government Publications Office, Boulder, CO, pp. 3–20

    Google Scholar 

  • Basu S (1975) Universal time seasonal variations of auroral zone magnetic activity and VHF scintillations. J Geophys Res 80:4725–4728

    Google Scholar 

  • Boller BR, Stolov HL (1970) Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. J Geophys Res 75:6073

    Google Scholar 

  • Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80:4204

    Google Scholar 

  • Cahill LJ Jr (1966) Inflation of the inner magnetosphere during a magneticstorm. J Geophys Res 71:4505

    Google Scholar 

  • Carovillano, RL, Maguire JJ (1968) Magnetic energy relationships in the magnetosphere, In: Carovillano RL and McClay JF (eds) Physics of the magnetosphere, Astrophysics and Space Science Library, Reidel, Dordrecht, The Netherlands, pp 270–300

    Google Scholar 

  • Chun FK, Knipp DJ, McHarg MG, Lu G, Emery BA, Troshichev OA (1999) Polar cap index as a proxy for hemispheric Joule heating. Geophys Res Lett 26:1101

    Google Scholar 

  • Clauer CR, McPherron RL (1980) The relative importance of the interplanetary electric field and magnetospheric substorms on the partial ring current development. J Geophys Res 85:6747–6759

    Google Scholar 

  • Clauer CR, McPherron RL, Searls C, Kivelson MG (1981) Solar wind control of auroral zone geomagnetic activity. Geophys Res Lett 8:915–918

    Google Scholar 

  • Clilverd MA, Clark T, Clarke E, Rishbeth H, Ulich T (2002) The causes of long-term change in the aa index. J Geophys Res 107:A12441. doi:10.1029/2001JA000501

    Google Scholar 

  • Clilverd MA, Clarke E, Ulich T, Linthe J, Rishbeth H (2005) Reconstructing the long-term aa index. J Geophys Res 110:A07205. doi:10.1029/2004JA010762

    Google Scholar 

  • Cliver EW, Boriakoff V, Bounar KH (1998) Geomagnetic activity and the solar wind during the Maunder Minimum. Geophys Res Lett 25:897

    Google Scholar 

  • Cliver EW, Kamide Y, Ling AG (2000) Mountains versus valleys: Semiannual variation of geomagnetic activity. J Geophys Res 105:2413–2424

    Google Scholar 

  • Clauer CR, McPherron RL, Searls C (1983) Solar wind control of the low- latitude asymmetric magnetic disturbance field. J Geophys Res 88:2123–2130

    Google Scholar 

  • Coles R, Menvielle M (1991) Some thoughts concerning new digital magnetic indices. Geophys Trans 36:303–312

    Google Scholar 

  • Cowley SWH (1982) The causes of convection in the Earth’s magnetosphere: a review of developments during the IMS. Rev Geophys Space Phys 20:531–565

    Google Scholar 

  • Crooker NC, Siscoe GL (1971) A study of the geomagnetic disturbance field asymmetry. Radiol Sci 6:495–501

    Google Scholar 

  • Crooker NC (1972) High-time resolution of the low-latitude asymmetric disturbance in the geomagnetic field. J. Geophys Res 77:773–775

    Google Scholar 

  • Crooker NU, Siscoe GL (1981) Birkeland currents as the cause of thelow-latitude asymmetric disturbance field. J Geophys Res 86:11201

    Google Scholar 

  • Curto J-J, Araki T, Alberca LF (2007a) Evolution of the concept of Sudden Storm Commencements and their operative identification. Earth Planet Space 59:I–XII

    Google Scholar 

  • Curto J-J, Cardùs JO, Alberca LF, Blanch E (2007b) Milestones of the IAGA International Service of Rapid Magnetic Variations and its contribution to geomagnetic field knowledge. Earth Planets Space 59:463–471

    Google Scholar 

  • Davis TN, Sugiura M (1966) Auroral electroject activity index AE and its universal time variations. J Geophys Res 71:785–801

    Google Scholar 

  • de La Sayette P, Berthelier A (1996) The am annual-diurnal variations 1959–1988: A 30 year evaluation. J Geophys Res 101:10,653

    Google Scholar 

  • Dessler AJ, Parker EN (1959) Hydromagnetic theory of geomagnetic storms. J Geophys Res 64:2239–2252.

    Google Scholar 

  • Echer E, Gonzalez WD, Gonzalez ALC, Prestes A, Vieira LEA, Dal Lago A, Guarnieri FL, Schuch NJ. (2004) Long-term correlation between solar and geomagnetic activity. J Atmos Solar-Terr Phys 66:1019–1025

    Google Scholar 

  • Fiori RAD, Koustov AV, Boteler D, Makarevich RA (2009) PCN magnetic index and average convection velocity in the polar cap inferred from SuperDARN radar measurements. J Geophys Res 114:A07225. doi:10.1029/2008JA013964

    Google Scholar 

  • Frank LA (1970) Direct detection of asymmetric increases of extraterrestrial ring proton intensities in the outer radiation zone. J Geophys Res 75:1263

    Google Scholar 

  • Fukushima N (1976) Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep Ionos Res Japan 30:35–40

    Google Scholar 

  • Fukushima N, Kamide Y (1973) Partial ring current models for world geomagnetic disturbances. Rev Geophys Space Phys 11:795

    Google Scholar 

  • Hakkinen LVT, Pulkkinen TI, Nevanlinna H, Pirjola RJ, Tankanen EI (2002) Effects of induced currents on Dst and on magnetic variations at midlatitude stations. J Geophys Res 107:1014–1021. doi:10.1029/2001JA900130

    Google Scholar 

  • Huang C-S (2005) Variations of polar cap index in response to solar wind changes and magnetospheric substorms. J Geophys Res 110:A01203. doi:10.1029/2004JA010616

    Google Scholar 

  • Iijima T, Potemra TA, Zanetti LJ (1990) Large-scale characteristics of magnetospheric equatorial currents. J Geophys Res 95:991

    Google Scholar 

  • Iyemori T (1990) Storm-time magnetos-pheric currents inferred from mid-latitude geomagnetic field variations. J Geomagnetics Geoelectrics 42:1249–1265

    Google Scholar 

  • Iyemori T, Rao DRK (1996) Decay of the Dst component of geomagnetic disturbance after substorm onset and its implication to storm substorm relation. Ann Geophys 14:608–618

    Google Scholar 

  • Iyemori T, Maeda H, Kamei T (1979) Impulse response of geomagnetic indices to interplanetary magnetic field. J Geomagnetics Geoelectrics 31:1–9

    Google Scholar 

  • Janzhura A, Troshichev O, Stauning P (2007) Unified PC indices: Relation to the isolated magnetic substorms. J Geophys Res 112:A09207. doi:10.1029/2006JA012132

    Google Scholar 

  • Johnston HF (1943) Mean K-indices from twenty one magnetic observatories and five quiet and five disturbed days for 1942. Terr Magn Atmos Elec 47:219

    Google Scholar 

  • Jordanova VK (2007) Modeling geoma-gnetic storm dynamics: New results and chal-lenges. J Atmosp Solar-Terr Phy 69:56–66

    Google Scholar 

  • Karinen A, Mursula K (2005) A new reconstruction of the Dst index for 1932–2002. Ann Geophys 23:475–485

    Google Scholar 

  • Kawasaki K, Akasofu S-I (1971) Low-latitude DS component of geomagnetic storm field. J Geophys Res 76:2396–2405

    Google Scholar 

  • Kitamura K, Shimazu H, Fujita S, Watari S, Kunitake M, Shinagawa H, Tanaka T (2008) Properties of AE indices derived from real-time global simulation and their implications for solar wind-magnetosphere coupling. J Geophys Res 113:A03S10. doi:10.1029/2007JA012514

    Google Scholar 

  • Kozyreva OV, Pilipenko VA, Engebretson MJ, Yumoto K, Watermann J, Romanova N (2007) In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planet Space Sci 55:755–769. doi:10.1016/j.pss.2006.03.013

    Google Scholar 

  • Langel RA, Estes RH, Mead GD, Fabiano EB, Lancaster ER (1980) Initial geomagnetic field model from Magsat vector data. Geophys Res Lett 7:793

    Google Scholar 

  • Lathuillère C, Menvielle M (2010) Comparison of the observed and modeled low- to mid-latitude thermosphere response to magnetic activity: Effects of solar cycle and disturbance time delay. J Adv Space Res 45:1093–1100. doi:10.1016/j.asr.2009.08.016

    Google Scholar 

  • Lathuillère C, Menvielle M, Lilensten J, Amari T, Radicella SM (2002) From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments. Ann Geophys 20:1081–1104

    Google Scholar 

  • Lathuillère C, Menvielle M, Marchaudon A, Bruinsma S (2008) A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J Geophys Res 113:A07311. doi:10.1029/2007JA012991

    Google Scholar 

  • Legrand JP, Simon P (1991) A two components solar cycle. Sol Phys 131:187

    Google Scholar 

  • Li X, Oh KS, Temerin M (2007) Prediction of the AL index using solar wind parameters. J Geophys Res 112:A06224. doi:10.1029/2006JA011918

    Google Scholar 

  • Liou K, Carbary JF, Newell PT, Meng C-I, Rasmussen O (2003) Correlation of auroral power with the polar cap index. J Geophys Res 108(A3):1108. doi:10.1029/2002JA009556

    Google Scholar 

  • Lockwood M, Stamper R, Wild MN (1999) A Doubling of the Sun’s Coronal Magnetic Field during the Last 100 Years. Nature 399:437–439

    Google Scholar 

  • Lukianova R (2003) Magnetospheric response to sudden changes in solar wind dynamic pressure inferred from polar cap index. J Geophys Res 108(A12):1428. doi:10.1029/2002JA009790

    Google Scholar 

  • Lukianova R (2007) Comment on Unified PCN and PCS indices: method of calculation, physical sense, dependence on the IMF azimuthal and northward components In: Troshichev O, Janzhura A, Stauning P(eds). J Geophys Res 112:A07204. doi:10.1029/2006JA011950

    Google Scholar 

  • Lukianova R, Troshichev OA, Lu G (2002) The polar cap magnetic activity indices in the southern (PCS) and northern (PCN) polar cap: Consistency and discrepancy. Geophys Res Lett 29:1879. doi:10.1029/2002GL015179

    Google Scholar 

  • Lyatsky W, Lyatskaya S, Tan A (2007) A coupling function for solar wind effect on geomagnetic activity. Geophys Res Lett 34:L02107. doi:10.1029/2006GL027666

    Google Scholar 

  • Lyatskaya S, Lyatsky W, Khazanov GV (2008) Relationship between substorm activity and magnetic disturbances in two polar caps. Geophys Res Lett 35:L20104. doi:10.1029/2008GL035187

    Google Scholar 

  • Mansurov SM (1969) New evidence of a relationship between magnetic fields in space and on Earth. Geomagn Aeron 9:622

    Google Scholar 

  • Mareschal M, Menvielle M (1986) On the use of K indices to define maximum external contributions to Magsat data at midlatitudes. Phys Earth Planet Inter 43:799–204

    Google Scholar 

  • Maus S, McLean S, Dater D, Lühr H, Rother M, Mai W, Choi S (2005) NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field. Earth Planets Space 57:1151–1156

    Google Scholar 

  • Mayaud, PN (1967) Atlas des indices K, IAGA Bull. 21, International Union of Geodesy and Geophysics, Paris

    Google Scholar 

  • Mayaud PN (1968) Indices Kn, Ks, Km, 1964–1967, Centre National de la Recherche Scientifique, Paris, 156p

    Google Scholar 

  • Mayaud PN (1971) Une mesure planétaire d’activité magnétique basée sur deux observatoires antipodaux. Ann Geophys 27:67

    Google Scholar 

  • Mayaud PN (1973) A hundred year series of geomagnetic data, 1868–1967: indices aa, storm sudden commencements, IUGG Publication Office, Paris, 256p

    Google Scholar 

  • Mayaud PN (1976) Analyse d’une série centenaire d’indices d’activité magnétique, III, la distribution de fréquence est-elle logarithmo-normale ? Ann Geophys 32:443

    Google Scholar 

  • Mayaud PN (1978) Morphology of the transient irregular variations of the terrestrial magnetic field, and their main statistical laws. Ann Geophys 34:243

    Google Scholar 

  • Mayaud PN (1980) Derivation, meaning, and use of geomagnetic indices, Geophys. Monogr. Ser., vol 22. AGU, Washington, DC

    Google Scholar 

  • Mayaud PN, Menvielle M (1980) A report on Km observatories visit, in IAGA Bull. 32i, International Union of Geodesy and Geophysics Publication Office, Paris, p 113

    Google Scholar 

  • McCreadie H, Menvielle M (2010) The PC Index: Review of methods. Ann Geophys (in press)

    Google Scholar 

  • McCreadie H, Menvielle M, Barton C (2010) A guide to geomagnetic indices derived from Earth surface data. Ann Geophys submitted.

    Google Scholar 

  • McIntosh DH (1959) On the annual variation of magnetic disturbance. Phil Trans R Soc London A 251:525

    Google Scholar 

  • McPherron RL (1995) Magnetospheric dynamics, In: Kivelson MG, Russel CT (eds) Introduction to space physics. Cambridge University Press, New York, USA pp 400–458

    Google Scholar 

  • Menvielle M. (1979) A possible geophysical meaning of K indices. Ann Géophys 35:189–196

    Google Scholar 

  • Menvielle M (1991) Evaluation of aigorithms for computer production of K indices. Geophys Trans 36:313–320

    Google Scholar 

  • Menvielle M (2003) On the possibility to monitor the planetary activity with a time resolution better than 3 hours, In: Loubser L (ed) Proceedings of the Xth IAGA Workshop on Geomagnetic Instruments Data Acquisition and Processing, HMO publication, pp 246–250

    Google Scholar 

  • Menvielle M, Berthelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys Space Phys Hermanus, Republic of South Africa 29:415–432; erratum: 30:91 1992

    Google Scholar 

  • Menvielle M, Marchaudon A (2007) Geomagnetic indices. In: Lilensten J (ed) Solar-Terrestrial Physics and Space Weather, Space Weather, Springer, Dordrecht, The Netherlands pp 277–288

    Google Scholar 

  • Menvielle M, Paris J (2001) The aλ longitude sector geomagnetic indices. Contrib Geophys Geod 31:315–322

    Google Scholar 

  • Menvielle M, Clarke E, Thomson A (2010) The aa data series revisited: the Abinger to Hartland normalization, XIVth Workshop on Geomagnetic Instruments, Data Acquisition and Processing, Changchun, China, Oral communication

    Google Scholar 

  • Menvielle M, Papitashvili NE, Häkkinen L, Sucksdorff C (1995) Computer production of K indices: review and comparison of methods. Geophys J Int 123:866–886

    Google Scholar 

  • Menvielle M, Rossignol J-C, Tarits P (1982) The coast effect in terms of deviated electric currents: a numerical study. Phys Earth Planet Inter 28:118–128

    Google Scholar 

  • Müller S, Lühr H, Rentz S (2009) Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann Geophys 27:2087–2099

    Google Scholar 

  • Nakabe S, Iyemori T, Sugiura M, Slavin JA (1997) A statistical study of the Magnetic field structure in the inner magnetosphere. J Geophys Res 102:17571–17582

    Google Scholar 

  • Nakano S, Iyemori T (2003) Local-time distribution of net field-aligned currents derived from high-altitude satellite data. J Geophys Res 108(A8):1314. doi:10.1029/2002JA009519

    Google Scholar 

  • Nakano S, Iyemori T (2005) Storm-time field-aligned currents on the nightside inferred from ground-based magnetic data at midlatitudes: Relationships with the interplanetary magnetic field and substorms. J Geopys Res 110:A07216. doi:10.1029/2004JA010737

    Google Scholar 

  • Nevanlinna H, Ketola A, Häkiinen L, Viljanen A, Ivory K (1993) Geomagnetic activity during solar cycle 9 (1844–1856). Geophys Res Lett 20:743–746

    Google Scholar 

  • Niblett ER, Loomer EI, Coles RL, Jansen G Van Beek (1984) Derivation of K indices using magnetograms constmcted from digital data. Geophys Surv 6:431

    Google Scholar 

  • Nosé M, Iyemori T, Takeda M, Toh H, Ookawa T, Cifuentes G-Nava, Matzka J, Love JJ, McCreadie H, MK, Tunçer, Curto JJ (2009) New substorm index derived from high-resolution geomagnetic field data at low latitude and its comparison with AE and ASY indices, In: Love JJ (ed) Proceedings of XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, U.S. Geological Survey Open-File Report 2009–1226, pp 202–207

    Google Scholar 

  • Østgaard N, Vondrak RR, Gjerloev JW, Germany G (2002) A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. J Geophys Res 107:1246. doi:10.1029/2001JA002003

    Google Scholar 

  • Olbert S, Siscoe GL, Vasyliunas VM (1968) A simple derivation of the Dessler-Parker-Sckopke relation. J Geophys Res 73:1115–1116

    Google Scholar 

  • Ouattara F, Amory-Mazaudier C, Menvielle M, Simon P, Legrand J-P (2009) On the long term change in the geomagnetic activity during the 20th century. Ann Geophys 27:2045–2051

    Google Scholar 

  • Papitashvili VO, Gromova LI, Popov VA, Rasmussen O (2001) Northern Polar Cap magnetic activity index PCN: Effective area, universal time and solar cycle variations, Scientific Report 01-01, Danish Meteorological Institute, Copenhagen, Denmark, 57 pp

    Google Scholar 

  • Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys J R Astr Soc 54:547–573

    Google Scholar 

  • Pilipenko V, Kleimenova N, Kozyreva O, Engebretson M, Rasmussen O (2001) Global ULF wave activity during the May 15, 1997 magnetic storm. J Atmos Sol Terr Phys 63:489

    Google Scholar 

  • Rangarajan GK (1989) Indices of geoma-gnetic activity, in Geomagnetism, edited by Jacobs JA, Academic, San Diego, California, p 323

    Google Scholar 

  • Richardson G, Cliver EW, Cane HV (2000) Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J Geophys Res 105:18203–18213

    Google Scholar 

  • Rostoker G. (1972) Geomagnetic indices. Rev Geophys Space Phys 10:935–950

    Google Scholar 

  • Russell CT, McPherron RL (1973) Semiannual variation of geomagnetic activity. J Geophys Res 78:92

    Google Scholar 

  • Sabine E (1856) On periodical laws discoverable in the mean effects of the larger magnetic disturbances. Phil Trans R Soc London A, 146:357

    Google Scholar 

  • Sckopke N (1966) A general relation between the energy of trapped particles and the disturbance field near the Earth. J Geophys Res 71:3125–3130

    Google Scholar 

  • Shue J-H, Kamide Y (2001) Effects of solar wind density on auroral electrojets. Geophys Res Lett 28:2181–2184

    Google Scholar 

  • Siscoe GL (1970) The virial theorem applied to magnetospheric dynamics. J Geophys Res 75:5340–5350

    Google Scholar 

  • Stauning P (2007) A new index for the interplanetary merging electric field and geomagnetic activity: Application of the unified polar cap indices. Space Weather 5:S09001. doi:10.1029/2007SW000311

    Google Scholar 

  • Stauning P, Troshichev OA (2008a) Polar cap convection and PC index during sudden changes in solar wind dynamic pressure. J Geophys Res 113:A08227. doi:10.1029/2007JA012783

    Google Scholar 

  • Stauning P, Troshichev OA, Janzhura, AS: Polar Cap (PC) Index. Unified PC-N (North) index procedures and quality, Scientific Report 06–04, Danish Meteorological Institute, Copenhagen, Denmark, 2006

    Google Scholar 

  • Stauning P, Troshichev OA, Janzhura A (2008b) The Polar Cap (PC) indices: Relations to solar wind parameters and global magnetic activity. J Atmos Terr Phys 70:2246–2261

    Google Scholar 

  • Sucksdorff C, Pirjola R, Hàkkinen L (1991) Computer production of K-values based on linear elimination. Geophys Trans 36:333–345

    Google Scholar 

  • Sugiura M. (1964) Hourly values of equatorial Dst for the IGY., Annals of International Geophysics Year, vol 35, Chapter 9. Pergamon Press, Oxford

    Google Scholar 

  • Sugiura M. (1973) Quiet time magneto-spheric field depression at 2.3–3.6 RE. J Geophys Res 78:3182

    Google Scholar 

  • Sugiura M, Chapman S (1960) The average morphology of geomagnetic storms with sudden commencement, Abandl. Akad. Wiss. Getingen Math. Phys. Kl., Sondernheft Nr.4, Götingen

    Google Scholar 

  • Sugiura M, Hendricks S (1967) Provisional hourly values of equatorial Dst for 1961, 1962 and 1963, NASA Tech. note D-4047

    Google Scholar 

  • Sugiura M, Kamei T (1991) Equatorial Dst index 1957–1986, IAGA Bulletin No. 40

    Google Scholar 

  • Sugiura M, Poros DJ (1973) A magnetospheric field model incorporating the OGO-3 and -5 magnetic field observations. Planet Space Sci 21:1763

    Google Scholar 

  • Suzuki A, Fukushima N (1984) Anti-sunward current below the MAGSAT level during magnetic storms. J Geomagnetics Geoelectrics 36:493–506

    Google Scholar 

  • Svalgaard L (1968) Sector Structure of the Interplanetary Magnetic Field and Daily Variation of the Geomagnetic Field at High Latitudes, Geophysical papers R-6, Danish Meteorogical Institute

    Google Scholar 

  • Svalgaard L (1977) Geomagnetic activity: Dependence on solar wind parameters, In: Zirker JB (ed) Skylab workshop monograph on coronal holes, Chapter 9. Columbia University Press, New York, NY, p 371

    Google Scholar 

  • Svalgaard L, Cliver EW (2005) The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J Geophys Res 110:A12103. doi:10.1029/2005JA011203

    Google Scholar 

  • Svalgaard L, Cliver EW (2007) Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J Geophys Res 112:A10111. doi:10.1029/2007JA012437

    Google Scholar 

  • Svalgaard L, Cliver EW, Le Sager P (2004) IHV: a new long-term geomagnetic index. Adv Space Res 34, 436–439.

    Google Scholar 

  • Takahashi K, Meng C, Kamei T, Kikuchi T, Kunitake M (2004) Near-real-time Auroral Electrojet index: An international collaboration makes rapid delivery of Auroral Electrojet index. Space Weather 2:S11003. doi:10.1029/2004SW000116

    Google Scholar 

  • Takalo J. Mursula K (2001) A model for the diurnal universal time variation of the Dst index. J Geophys Res 106:10905–10921

    Google Scholar 

  • Takeda M (1999) Time variation of geomagnetic Sq field in 1964 and 1980. JASTP 61:765–774

    Google Scholar 

  • Thomson AWP, Lesur V (2007) An improved geomagnetic data selection algorithm for global geomagnetic field modeling. Geophys J Int 169:951–963. doi:10.1111/j.1365-246X.2007.03354

    Google Scholar 

  • Troshichev OA, Andrezen VG (1985) The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet Space Sci 33:415–419

    Google Scholar 

  • Troshichev OA, Andrezen VG, Vennerstrøm S, Friis-Christensen E (1988) Magnetic activity in the polar cap: Anew index. Planet Space Sci 36:1095–1102

    Google Scholar 

  • Troshichev OA, Dmitrieva NP, Kuznetsov BM (1979) Polar cap magnetic activity as a signature of substorm development. Planet Space Sci 27:217–221

    Google Scholar 

  • Troshichev OA, Hayakawa H, Matsuoka A, Mukai T, Tsuruda K (1996) Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities. J Geophys Res 101:13,429

    Google Scholar 

  • Troshichev OA, Janzhura A, Stauning P (2006) Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. J Geophys Res 111:A05208. doi:10.1029/2005JA011402

    Google Scholar 

  • Troshichev OA, Janzhura A, Stauning P (2007a) Magnetic activity in the polar caps: Relation to sudden changes in the solar wind dynamic pressure. J Geophys Res 112:A11202. doi:10.1029/2007JA012369

    Google Scholar 

  • Troshichev OA, Janzhura A, Stauning P (2007b) Reply to Comment of Lukianova R, R. on paper In: Troshichev OA, Janzhura A, Stauning P (eds) The unified PCN and PCS indices: method of calculation, physical sense, dependence on the IMF azimuthal and northward components J Geophys Res 112:A07205. doi:10.1029/2006JA012029

    Google Scholar 

  • Troshichev OA, Lukianova RY, Papitashivili VO, Rich FJ, Rasmussen O (2000) Polar cap index (PC) as a proxy for ionospheric electric field in the near-pole region. Geophys Res Lett 27:3809

    Google Scholar 

  • Vennerstrøm S, Friis-Christensen E, Troshichev OA, Andrezen VG (1991) Comparison between the polar cap index, PC, and the auroral electrojet indices AE, AL, and AU. J Geophys Res 96:101

    Google Scholar 

  • Vennerstrøm S, Friis-Christensen E, Troshichev OA, Andrezen VG (1994) Geomagnetic Polar Cap (PC) Index 1975–1993, Report UAG-103, WDC-A for STP, NGDC, Boulder. (Cited from Papitashvili et al. 2001)

    Google Scholar 

  • Weigel RS (2007) Solar wind time history contribution to the day-of-year variation in geomagnetic activity. J Geophys Res 112:A10207. doi:10.1029/2007JA012324

    Google Scholar 

  • Weygand JM, Zesta E (2008) Comparison of auroral electrojet indices in the northern and southern hemispheres. J Geophys Res 113:A08202. doi:10.1029/2008JA013055

    Google Scholar 

Download references

Acknowledgements

The authors thank A.W.P. Thomson for his constructive review that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Menvielle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Menvielle, M., Iyemori, T., Marchaudon, A., Nosé, M. (2011). Geomagnetic Indices. In: Mandea, M., Korte, M. (eds) Geomagnetic Observations and Models. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9858-0_8

Download citation

Publish with us

Policies and ethics