Skip to main content

Mapping and Interpretation of the Lithospheric Magnetic Field

  • Chapter
  • First Online:

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 5))

Abstract

We review some of the controversial and exciting interpretations of the magnetic field of the earth’s lithosphere occurring in the four year period ending with the IAGA meeting in Sopron in 2009. This period corresponds to the end of the Decade of Geopotential Research, an international effort to promote and coordinate a continuous monitoring of geopotential field variability in the near-Earth environment. One of the products of this effort has been the World Digital Magnetic Anomaly Map, the first edition of which was released in 2007. A second, improved, edition is planned for 2011. Interpretations of the lithospheric magnetic field that bear on impacts, tectonics, resource exploration, and lower crustal processes are reviewed. Future interpretations of the lithospheric field will be enhanced through a better understanding of the processes that create, destroy, and alter magnetic minerals, and via routine measurements of the magnetic field gradient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuña M et al (1999) Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284(5415):790–793

    Google Scholar 

  • Airo M, Mertanen S (2008) Magnetic signatures related to orogenic gold mineralization. J Appl Geophys 64:14–24

    Google Scholar 

  • Anand S, Rajaram M (2006) Aeromagnetic data analysis for the identification of concealed uranium deposits: a case history from Singhbhum uranium province, India. Earth Planet Space 58:1099–1103

    Google Scholar 

  • Anand S, Rajaram M, Majumdar T, Bhattacharyya R (2009) Structure and tectonics of 85 E Ridge from analysis of geopotential data. Tectonophysics 478:100–110

    Google Scholar 

  • Astudillo N, Roperch P, Townley B, Arriagada C, Chauvin A (2010) Magnetic polarity zonation within the El Teniente copper-molybdenum porphyry deposit, central Chile. Mineralium Deposita 45:23–41

    Google Scholar 

  • Austin J, Blenkinsop T (2008) The Cloncurry Lineament: Geophysical and geological evidence for a deep crustal structure in the eastern succession of the Mount Isa Inlier. Precambrian Res 163:50–68

    Google Scholar 

  • Austin J, Blenkinsop T (2009) Local to regional scale structural controls on mineralization and the importance of a major lineament in the eastern Mount Isa Inlier. Australia: review and analysis with autocorrelation and weights of evidence. Ore Geol Rev 35:298–316

    Google Scholar 

  • Bektas O, Ravat D, Bueyueksarac A, Bilim F, Ates A (2007) Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl Geophys 164(5):975–998. doi:10.1007/s00024-007-0196-5

    Google Scholar 

  • Betts P, Barraud J, Lumley J, Davies M (2004) Aeromagnetic patterns of half-graben and basin inversion: implications for sediment-hosted massive sulfide Pb-Zn-Ag exploration. J Struct Geol 26:1137–1156

    Google Scholar 

  • Bilim F (2007) Investigations into the tectonic of Kutahya-Denizli region, lineaments and thermal structure western Anatolia, from using aeromagnetic, gravity and seismological data. Phys Earth Planet Inter 165(3–4):135–146. doi:10.1016/j.pepi.2007.08.007

    Google Scholar 

  • Blakely R, Wells R, Weaver C, Johnson S (2002) Location, structure, and seismicity of the Seattle fault zone, Washington: evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data. Geol Soc Am Bull 114(2):169–177

    Google Scholar 

  • Blakely R, Brocher T, Wells R (2005) Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33(6):445–448. doi:10.1130/G21447.1

    Google Scholar 

  • Blakely RJ, John DA, Box SE, Berger BR, Fleck RJ, Ashley RP, Newport GR, Heinemeyer GR (2007) Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada. Geosphere 3(2):91–107. doi:10.1130/GES00071.1

    Google Scholar 

  • Blakely RJ, Sherrod BL, Hughes JF, Anderson ML, Wells RE, Weaver CS (2009) Saddle mountain fault deformation zone, Olympic Peninsula, Washington: western boundary of the Seattle uplift. Geosphere 5(2):105–125. doi:10.1130/GES00196.1

    Google Scholar 

  • Bostock M, Hyndman R, Rondenay S, Peacock S (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature 417(6888):536–538

    Google Scholar 

  • Bouligand C, Glen JMG, Blakely RJ (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res Solid Earth 114. B11104, doi:10.1029/2009JB006494

    Google Scholar 

  • Brocher T, Parsons T, Trehu A, Snelson C, Fisher M (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology 31(3):267–270

    Google Scholar 

  • Carporzen L, Gilder S, Hart R (2005) Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435(7039):198–201. doi:10.1038/nature03560

    Google Scholar 

  • Chernicoff C, Nash C (2002) Geological interpretation of Landsat TM imagery and aeromagnetic survey data, northern Precordillera region, Argentina. J South Am Earth Sci 14:813–820

    Google Scholar 

  • Chernicoff C, Richards J, Zappettini E (2002) Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical and remote sensing evidence. Ore Geol Rev 21:127–155

    Google Scholar 

  • Christensen A, Rajagopalan S (2000) The magnetic vector and gradient tensor in mineral and oil exploration. Preview 77

    Google Scholar 

  • ChunFeng L, Bing C, ZuYi Z (2009) Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci China Series D Earth Sci 52(7):984–993. doi:10.1007/s11430-009-0096-x

    Google Scholar 

  • Clark D (1997) Magnetic petrophysics and magnetic petrology: aids to geologic interpretation of magnetic surveys. AGSO J Aust Geol Geophys 17:83–103

    Google Scholar 

  • Clark D (1999) Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation. Explor Geophys 30:5–26

    Google Scholar 

  • Clark D, Lackie M (2003) Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia. Geophys J Int 153(3):523–547. doi:10.1046/j.1365-246x.2003.01907.x

    Google Scholar 

  • Clark D, Schmidt P (2001) Petrophysical properties of the Goonumbla volcanic complex, NSW: implications for magnetic and gravity signatures of porphyry Cu-Au mineralization. Explor Geophys 32:171–175

    Google Scholar 

  • Clark D, Schmidt P, Coward D, Huddleston M (1998) Remote determination of magnetic properties and improved drill targeting of magnetic anomaly sources by Differential Vector Magnetometry (DVM). Explor Geophys 29:312–319

    Google Scholar 

  • Clark D, Geuna S, Schmidt P (2004) Predictive magnetic exploration models for porphyry, epithermal, and iron oxide copper-gold deposits: implications for exploration, P700 Final Report, AMIRA International Ltd.

    Google Scholar 

  • Clem T, Overway D, Purpura J, Bono J, Koch R, Rozen J, Keefe G, Willen S, Mohling R (2001) High-Tc SQUID gradiometer for mobile magnetic anomaly detection. IEEE Trans Appl. Supercond 11:871–875

    Google Scholar 

  • Cowan D, Cooper G (2005) Enhancement of magnetic signatures of impact craters modeling and petrophysics. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III, Geological Society of America Boulder, Colorado, Special Paper 384, pp 51–65

    Google Scholar 

  • de Castro DL, de Oliveira DC, Gomes Castelo Branco RM (2007) On the tectonics of the Neocomian Rio do Peixe Rift Basin, NE Brazil: lessons from gravity, magnetics, and radiometric data. J South Am Earth Sci 24(2–4):184–202. doi:10.1016/j.jsames.2007.04.001

    Google Scholar 

  • Drenth BJ, Finn CA (2007) Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos mountains intrusion, Big Bend National Park, Texas. Geol Soc Am Bull 119(11–12):1521–1534

    Google Scholar 

  • Dunlop D (2005) Planetary science—Magnetic impact craters. Nature 435(7039):156–57. doi:10.1038/435156a

    Google Scholar 

  • Esdale D, Pridmore D, Coggon J, Muir P, William P, Fritz F (2003) Olympic dam copper-uranium-gold-silver-rare earth element deposit, South Australia: a geophysical case history. In: Dentith MC (ed) Geophysical signatures of South Australian mineral deposits, Centre for Global Metallogeny, University of Western Australia, Publication 31, pp 147–168

    Google Scholar 

  • Espinosa-Cardena JM, Campos-Enriquez JO (2008) Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, Mexico. J Volcanol Geothermal Res 176(4):601–609. doi:10.1016/j.jvolgeores.2008.04.014

    Google Scholar 

  • Feebrey C, Hishida H, Yoshioka K, Nakayama K (1998) Geophysical expression of low sulphidation epithermal Au-Ag deposits and exploration implications-examples from the Hokusatsu region of SW Kyushu, Japan. Resour Geol 48:75–86

    Google Scholar 

  • Ferraccioli F, Armadillo E, Jordan T, Bozzo E, Corr H (2009a) Aeromagnetic exploration over the East Antarctic ice sheet: a new view of the Wilkes Subglacial Basin. Tectonophysics 478(1–2, Sp. Iss. SI):62–77. doi:10.1016/j.tecto.2009.03.013, General Assembly of the International-Association-of-Geodesy/24th General Assembly of the International-Union-of-Geodesy-and-Geophysics, Perugia, Italy, Jul 02–13, 2007

    Google Scholar 

  • Ferraccioli F, Armadillo E, Zunino A, Bozzo E, Rocchi S, Armienti P (2009b) Magmatic and tectonic patterns over the northern Victoria land sector of the transantarctic mountains from new aeromagnetic imaging. Tectonophysics 478(1–2, Sp. Iss. SI):43–61. doi:10.1016/j.tecto.2008.11.028, General Assembly of the International-Association-of-Geodesy/24th General Assembly of the International-Union-of-Geodesy-and-Geophysics, Perugia, Italy, Jul 02–13, 2007

    Google Scholar 

  • Ferré E, Maes S, Butak K (2009) The magnetic stratification of layered mafic intrusions: Natural examples and numerical models. Lithos 111:83–94

    Google Scholar 

  • Force E, Dickinson W, Hagstrum J (1995) Tilting history of the San Manuel-Kalamazoo porphyry system, southeastern Arizona. Econ Geol 90:67–80

    Google Scholar 

  • Frey H (1982) MAGSAT Scalar anomaly distribution-The global perspective. Geophys Res Lett 9(4):277–280

    Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G, Haagmans R, Purucker M (2009) Geomagnetic Research from Space. Eos Trans Agu 90(25):213–214

    Google Scholar 

  • Gattacceca J, Berthe L, Boustie M, Vadeboin F, Rochette P, De Resseguier T (2008) On the efficiency of shock magnetization processes. Phys Earth Planetary Inter 166(1–2):1–10. doi:10.1016/j.pepi.2007.09.005

    Google Scholar 

  • Gee J, Kent D (2007) Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale. In: Kono M (ed) Geomagnetism, treatise of geophysics Amsterdam, vol 5, Elsevier, 5.12, pp 455–508

    Google Scholar 

  • Geissman J, Van der Voo R, KL Howard (1982) A paleomagnetic study of the structural deformation in the Yerington district, Nevada. Am J Sci 282:1042–1109

    Google Scholar 

  • Gilder S, LeGoff M, Chervin J, Peyronneau J (2004) Magnetic properties of single and multi-domain magnetite under pressures from 0 to 6 GPa. Geophys Res Lett 31(10). doi:10.L243061029/2004GL019844

    Google Scholar 

  • Gilder SA, Le Goff M (2008) Systematic pressure enhancement of titanomagnetite magnetization. Geophys Res Lett 35(10). doi:10.243061029/2008GL033325

    Google Scholar 

  • Graham K (1961) The re-magnetization of a surface outcrop by lightning currents. Geophys J Royal Astronom Soc 6(1):85–102

    Google Scholar 

  • Grant F (1984) Aeromagnetics, Geology, and ore environments, I. Magnetite in igneous, sedimentary, and metamorphic rocks: an overview. Geoexploration 23:303–333

    Google Scholar 

  • Grauch VJS, Hudson MR (2007) Guides to understanding the aeromagnetic expression of faults in sedimentary basins: lessons learned from the central Rio Grande rift, New Mexico. Geosphere 3(6):596–623. doi:10.1130/GES00128.1

    Google Scholar 

  • Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. J Aust Geol Geophys 16:399–420

    Google Scholar 

  • Gubbins D, Herrero-Bervera E (eds) (2007) Encyclopedia of geomagnetism and paleomagnetism, Springer, The Netherlands

    Google Scholar 

  • Guilbert J (1995) Geology, alteration, mineralization and genesis of the Bajo de la Alumbrera porphyry copper-gold deposit, Catamarca Province, Argentina. In: Pierce FW, Bolm JG (eds) Porphyry copper deposits of the American Cordillera, Arizona Geological Society Digest 20, pp 646–656

    Google Scholar 

  • Gunn P (1997) Regional magnetic and gravity responses of extensional sedimentary basins. Agso J Aust Geol Geophys 17(2):115–131

    Google Scholar 

  • Gunn P, Mackey T, Meixner A (2009) Magnetic exploration. Technical report Pacific Islands Applied Geoscience Commission, SOPAC Technical Bulletin 11

    Google Scholar 

  • Hamoudi M, Thébault E, Lesur V, Mandea M (2007) GeoForschungsZentrum Anomaly Magnetic Map (GAMMA): a candidate model for the world digital magnetic anomaly map. Geochem Geophys Geosyst 10. doi:10.1029/2007GC001638

    Google Scholar 

  • Haynes D (2000) Iron oxide copper(-gold) deposits: their position in the ore deposit spectrum and modes of origin. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 71–90

    Google Scholar 

  • Hemant K, Thébault E, Mandea M, Ravat D, Maus S (2007) Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based data. Earth Planetary Sci Lett 260:56–71

    Google Scholar 

  • Hildenbrand T, Berger B, Jachens R, Ludington S (2000) Regional crustal structures and their relationship to the distribution of ore deposits in the western United States, based on magnetic and gravity data. Econ Geol 95:1583–1603

    Google Scholar 

  • Hinze W, Von Frese R, Ravat D (1991) Mean magnetic contrasts between oceans and continents. Tectonophys 192(1–2):117–127. doi:10.1016/0040-1951(91)90250-V

    Google Scholar 

  • Hitzman M, Oreskes N, MT Einaudi (1992) Geological chracteristics and tectonic setting of proterozoic iron oxide (cu-U-Au-REE) deposits. Precambrian Res 1:1

    Google Scholar 

  • Humphrey K, Horton T, Keene M (2005) Detection of mobile targets from a moving platform using an actively shielded, adaptively balanced SQUID gradiometer. IEEE Trans Appl Supercond 15(2):753–756

    Google Scholar 

  • Hyndman R, Peacock S (2003) Serpentinization of the forearc mantle. Earth Planetary Sci Lett 212(3–4):417–432. doi:10.1016/S0012-821X(03)00263-2

    Google Scholar 

  • Irvine R, Smith M (1990) Geophysical exploration for epithermal gold systems. J Geochem Explor 36:375–412

    Google Scholar 

  • Jessel M (2001) Three-dimensional geological modeling of potential-field data. Comput Geosci 27:455–465

    Google Scholar 

  • Keenan T, Young J, Foley C, Du J (2010) A high-Tc flip-chip SQUID gradiometer for mobile underwater magnetic sensing. Supercond Sci Technol 23(025,029):7pp

    Google Scholar 

  • Kirby S, Engdahl E, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout GE et al. (eds) Subduction: top to bottom, American Geophysical Union Geophysical Monograph 96, pp 195–214

    Google Scholar 

  • Korhonen J, et al. (2007) Magnetic anomaly map of the world, and associated DVD, commission for the geological map of the world, UNESCO, Paris, France, Scale:1:50,000,000

    Google Scholar 

  • Langlais B, Lesur V, Purucker M, Connerney J, Mandea M (2010) Crustal magnetic fields of terrestrial planets. Space Sci Rev. doi:10.1007/s11214-009-9557-y, 152:223–249

    Google Scholar 

  • Leslie K, Blay K, Clark D, Schmidt P, Tilbrook D, Bick M, Foley C (2007) Helicopter trial of magnetic tensor gradiometer. In: ASEG 19th International Conference, Perth, Australia

    Google Scholar 

  • Lillis RJ, Frey HV, Manga M, Mitchell DL, Lin RP, MH Acuña, Bougher SW (2008) An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the martian dynamo. Icarus 194(2):575–596. doi:10.1016/j.icarus.2007.09.032

    Google Scholar 

  • Lillis RJ, Purucker ME, Louzada HJS, Stewart-Mukhopadhyay K, Manga M, Frey H (2010) Study of impact demagnetization on Mars using Monte Carlo modeling and multiple altitude data. J Geophys Res Planet. 115, E07007, doi:10.1029/2009JE003556

    Google Scholar 

  • Lindsayz D, Zentilli M, Rojas de la Rivera J (1995) Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata porphyry copper deposit, northern Chile. Int Geol Rev 37:945–958

    Google Scholar 

  • Louzada KL, Weiss BP, Maloof AC, Stewart ST, Swanson-Hysell NL, Soule SA (2008) Paleomagnetism of Lonar impact crater, India. Earth Planet Sci Lett 275(3–4):308–319. doi:10.1016/j.epsl.2008.08.025

    Google Scholar 

  • Lowell J (1968) Geology of the Kalamazoo orebody, San manuel district, Arizona. Econ Geol 63:645–654

    Google Scholar 

  • Lowell J, Guilbert J (1970) Lateral and vertical alteration-mineralization zoning in porphyry copper deposits. Econ Geol 65:373–408

    Google Scholar 

  • Lum J, Clark A, Coleman P (1991) Gold potential of the southwest Pacific: Papua New Guinea, Solomon Islands, Vanuatu, and Fiji, Technical report, East-West Center, Honolulu

    Google Scholar 

  • MacDonald G, Arnold L (1994) Geological and geochemical zoning of the Grasberg Igneous complex, Irian Java, Indonesia. J Geochem Explor 50:179–202

    Google Scholar 

  • Maden N (2009) Crustal Thermal Properties of the Central Pontides (Northern Turkey) deduced from spectral analysis of magnetic data. Turkish J Earth Sci 18(3):383–392. doi:10.3906/yer-0803-7

    Google Scholar 

  • Maia M, Dyment J, Jouannetaud D (2005) Constraints on age and construction process of the Foundation chain submarine volcanoes from magnetic modeling. Earth Planet Sci Lett 235(1–2):183–199. doi:10.1016/j.epsl.2005.02.044

    Google Scholar 

  • Mandea M, Purucker M (2005) Observing, modeling, and interpreting magnetic fields of the solid Earth. Surv Geophys 26(4):415–459. doi:10.1007/s10712-005-3857-x

    Google Scholar 

  • Manea M, Manea VC (2008) On the origin of El Chichon volcano and subduction of Tehuantepec ridge: a geodynamical perspective. J Volcanol Geotherm Res 175(4, Sp. Iss. SI):459–471. doi:10.1016/j.jvolgeores.2008.02.028

    Google Scholar 

  • Maus S, Gordon D, Fairhead D (1997) Curie-temperature depth estimation using a self-similar magnetization model. Geophys J Int 129(1):163–168

    Google Scholar 

  • Maus S, Luehr H, Rother M, Hemant K, Balasis G, Ritter P, Stolle C (2007a) Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem Geophys Geosyst 8. doi:10.1029/2006GC001521

    Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead J, Ravat D (2007b) National geophysical data center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8(6). doi:10.1029/2007GC001643

    Google Scholar 

  • McDowell F, McMahon T, Warren P, Cloos M (1996) Pliocene Cu-Aubearing igneous intrusions of the Gunung Bijih (Ertsberg) district, Irian Java, Indonesia: K-Ar geochronology. J Geol 104:327–340

    Google Scholar 

  • McEnroe S, Langenhorst F, Robinson P, Bromiley G, Shaw C (2004) What is magnetic in the lower crust? Earth Planet Sci Lett 226(1–2):175–192. doi:10.1016/j.epsl.2004.07.020

    Google Scholar 

  • McEnroe S, Brown L, Robinson P (2009a) Remanent and induced magnetic anomalies over a layered intrusion: Effects from crystal fractionation and magma recharge. Tectonophysics 478:119–134

    Google Scholar 

  • McEnroe S, Fabian K, Robinson P, Gaina C, Brown LL (2009b) Crustal magnetism, lamellar magnetism and rocks that remember. Elements 5(4):241–246. doi:10.2113/gselements.5.4.241

    Google Scholar 

  • Melosh H (1989) Impact cratering: a geologic process, Oxford University Press, New York, NY

    Google Scholar 

  • Muundjua M, Hart RJ, Gilder SA, Carporzen L, Galdeano A (2007) Magnetic imaging of the Vredefort impact crater, South Africa. Earth Planet Sci Lett 261(3–4):456–468. doi:10.1016/j.epsl.2007.07.044

    Google Scholar 

  • Muundjua M, Galdeano A, Carporzen L, Gilder SA, Hart RJ, Andreoli MAG, Tredoux M (2008) Reply to comment by Reimold WU, Gibson RL, Henkel H on Muundjua et al. (2007), Magnetic imaging of the Vredefort impact crater, South Africa, EPSL 261, pp 456-468 Discussion. Earth Planet Sci Lett 273(3–4):397–399. doi:10.1016/j.epsl.2008.06.044

    Google Scholar 

  • Nabighian M, Grauch V, Hansen R, LaFehr T, Li Y, Peirce J, Phillips J, Ruder M (2005) 75th Anniversary—The historical development of the magnetic method in exploration. Geophys 70(6):33ND–61ND. doi:10.1190/1.2133784

    Google Scholar 

  • Oleskevich D, Hyndman R, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res Solid Earth 104(B7):14,965–14,991

    Google Scholar 

  • Parker R (1991) A theory of Ideal bodies for Seamount magnetism. J Geophys Res Solid Earth 96(B10)

    Google Scholar 

  • Parker R (2003) Ideal bodies for Mars magnetic. J Geophys Res Planet 108(E1). doi:10.1029/2001JE001760

    Google Scholar 

  • Peacock S, Wang K, McMahon A (2002) Thermal structure and metamorphism of subducting oceanic crust: insight into Cascadia intraslab earthquakes and processes, and earthquake hazards, Open-file Report 02-328, 17–24, U.S. Geological Survey

    Google Scholar 

  • Pedersen L, Rasmussen T (1990) The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophys 55:1558–1566

    Google Scholar 

  • Phillips J (1997) Potential-field geophysical software for the PC-version 2.2, Open-file Report 97-725, U.S. Geological Survey

    Google Scholar 

  • Pilkington M, Hildebrand A (2003) Transient and disruption cavity dimensions of complex terrestrial impact structures derived from magnetic data. Geophys Res Lett 30(21). doi:10.1029/2003GL018294

    Google Scholar 

  • Potter D (1996) What makes Grasberg anomalous, implications for future exploration. In: Porphyry related copper and gold deposits of the Asia Pacific region, Australian Mineral Foundation, pp 10.1–10.13

    Google Scholar 

  • Prutkin I, Saleh A (2009) Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area, Egypt. J Geodynam 47(5):237–245. doi:10.1016/j.jog.2008.12.001

    Google Scholar 

  • Purucker M, SerpentTeam M (2010) Magnetic signatures of serpentinized mantle and mesoscale variability along the Alaska/Aleutian subduction zone, in Abstract book of the European Geoscience Union, Vienna, Austria

    Google Scholar 

  • Purucker M, Whaler K (2007) Crustal Magnetism. In: Kono M (ed) Geomagnetism, Treatise of Geophysics, vol 5, Chapter 6. Elsevier, Amsterdam, pp 195–236

  • Purucker M, Sabaka T, Le G, Slavin JA, Strangeway RJ, Busby C (2007) Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models of the lithosphere. Geophys Res Lett 34(24). L24306 doi:10.1029/2007GL031739

    Google Scholar 

  • Purucker M, Olsen N, Sabaka T, HR (2009a) Geomagnetism mission concepts after Swarm, in Abstract book of the Int. Assoc. Geomag. Aeronom. 11th Scientific Assembly, Sopron, Hungary, pp 105

    Google Scholar 

  • Purucker ME, Sabaka TJ, Solomon SC, Anderson BJ, Korth H, Zuber MT, Neumann GA (2009b) Mercury’s internal magnetic field: Constraints on large- and small-scale fields of crustal origin. Earth Planet Sci Lett 285(3–4, Sp. Iss. SI):340–346. doi:10.1016/j.epsl.2008.12.017

    Google Scholar 

  • Quesnel Y, Catalan M, Ishihara T (2009) A new global marine magnetic anomaly data set. J Geophys Res Solid Earth 114(B04106). doi:10.1029/2008JB006144

    Google Scholar 

  • Rabeh T, Miranda M (2008) A tectonic model of the Sinai Peninsula based on magnetic data. J Geophys Eng 5(4):469–479. doi:10.1088/1742-2132/5/4/010

    Google Scholar 

  • Rajaram M, Anand SP, Hemant K, Purucker ME (2009) Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth Planetary Sci Lett 281(3–4):147–158. doi:10.1016/j.epsl.2009.02.013

    Google Scholar 

  • Ranganai RT, Ebinger CJ (2008) Aeromagnetic and Landsat TM structural interpretation for identifying regional groundwater exploration targets, south-central Zimbabwe Craton. J Appl Geophys 65(2):73–83. doi:10.1016/j.jappgeo.2008.05.009

    Google Scholar 

  • Ravat D, et al. (2009) A preliminary, full spectrum magnetic anomaly grid of the United States with improved long wavelengths for studying continental dynamics: a website for distribution of data, Open-file Report 2009-1258, U.S. Geological Survey

    Google Scholar 

  • Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169(2):421–434. doi:10.1111/j.1365-246X.2007.03305.x

    Google Scholar 

  • Reeves C (2007) The role of airborne geophysical reconnaissance in exploration geosciences. First Break 19(9):501–508

    Google Scholar 

  • Reimold WU, Gibson RL, Henkel H (2008) Scientific comment on In: Muundjua et al., 2007: magnetic imaging of the Vredefort impact crater, South Africa, EPSL 261, 456–468 Discussion. Earth Planet Sci Lett 273(3–4):393–396. doi:10.1016/j.epsl.2008.06.046

    Google Scholar 

  • Robinson D, et al. (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22:3604–3635

    Google Scholar 

  • Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophys 71(5):L51–L59. doi:10.1190/1.2335572

    Google Scholar 

  • Saadi NM, Watanabe K, Imai A, Saibi H (2008) Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya. Earth Planets Space 60(6):539–547

    Google Scholar 

  • Sandrin A, Elming S (2006) Geophysical and petrophysical study of an iron oxide copper gold deposit in northern Sweden. Ore Geol Rev 29:1–18

    Google Scholar 

  • Sandrin A, Berggren R, Elming S (2007) Geophysical targeting of Feoxide Cu-(Au) deposits west of Kiruna, Sweden. J Appl Geophys 61:92–101

    Google Scholar 

  • Schmidt P, Clark D (2006) The magnetic gradient tensor: its properties and uses in source characterization. Leading Edge 25(1):75–78

    Google Scholar 

  • Schmidt P, Clark D, Logan K (1997) Paleomagnetism, magnetic petrophysics and magnetic signature of the Porgera Intrusive Complex, Papua New Guinea. Explor Geophys 28:276–280

    Google Scholar 

  • Schmidt PW, McEnroe SA, Clark DA, Robinson P (2007) Magnetic properties and potential field modeling of the Peculiar Knob metamorphosed iron formation, South Australia: an analog for the source of the intense Martian magnetic anomalies? J Geophys Res Solid Earth 112(B3). doi:10.1029/2006JB004495

    Google Scholar 

  • Schubert G (ed) (2007) Treatise on geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Shepherd T, Bamber J, Ferraccioli F (2006) Subglacial geology in coats land, East Antarctica, revealed by airborne magnetics and radar sounding. Earth Planetary Sci Lett 244(1–2):323–335. doi:10.1016/j.epsl.2006.01.068

    Google Scholar 

  • Sherrod BL, Blakely RJ, Weaver CS, Kelsey HM, Barnett E, Liberty L, Meagher KL, Pape K (2008) Finding concealed active faults: extending the southern whidbey Island fault across the Puget Lowland, Washington. J Geophys Res Solid Earth 113(B5). doi:10.1029/2007JB005060

    Google Scholar 

  • Sillitoe R (2000) Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. In: Hagemann, SG, Brown PE (eds) Gold in 2000, Society of Economic Geologists, Littleton, Colorado, vol. 13. Reviews of Economic Geology, pp 315–345

    Google Scholar 

  • Singh K, Okuma S, Special issue—Magnetic anomalies: tectonophysics. Tectonophysics 478:1–142

    Google Scholar 

  • Smith R (2002) Geophysics of iron oxide copper-gold deposits. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 123–136

    Google Scholar 

  • Spector A, Grant F (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35(2):293–302

    Google Scholar 

  • Spray J, Butler H, Thompson L (2004) Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modeling. Meteoritics Planetary Sci 39(2):287–301

    Google Scholar 

  • Stampolidis A, Kane I, Tsokas G, Tsourlos P (2005) Curie point depths of Albania inferred from ground total field magnetic data. Surveys Geophys 26(4):461–480. doi:10.1007/s10712-005-7886-2

    Google Scholar 

  • Stolz R, Chwala A, Zakosarenko V, Schulz M, Fritzsch L, Meyer H (2006) SQUID technology for geophysical exploration. In: SEG Expanded abstracts 25, pp 894–898

    Google Scholar 

  • Sunderland A, Golden H, McRae W, Veryaskin A, Blair D (2009) Results from a novel direct magnetic gradiometer. Explor Geophys 40:222–226

    Google Scholar 

  • Syberg F (1972) A Fourier method for the regional-residual of potential fields. Geophys Prospect 20:47–75

    Google Scholar 

  • ten Brink US, Rybakov M, Al-Zoubi AS, Rotstein Y (2007) Magnetic character of a large continental transform: an aeromagnetic survey of the dead sea fault. Geochem Geophys Geosyst 8. doi:10.1029/2007GC001582

    Google Scholar 

  • Thébault E, Purucker M, Whaler K, Langlais B, Sabaka T, The magnetic field of the Earth’s lithosphere. Space Sci Rev in press

    Google Scholar 

  • Trifonova P, Zhelev Z, Petrova T, Bojadgieva K (2009) Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophys 473(3–4):362–374. doi:10.1016/j.tecto.2009.03.014

    Google Scholar 

  • Ugalde H, Artemieva N, Milkereit B (2005) Magnetization on impact structures-Constraints from numerical modeling and petrophysics. In: Kenkmann T, Hörz, F, Deutsch A (eds) Large meteorite impacts III, Geological Society of America Special Paper 384, pp 25–42

    Google Scholar 

  • Wall V, Gow P (1995) Some copper-gold ore-forming systems: iron(ic) connections. In: Clark AH (ed) Giant Ore Deposits-II, Controls on the Scale or Orogenic Magmatic-Hydrothermal Mineralization. Proceedings of the Second Giant Ore Deposits Workshop, Kingston, Ontario, Canada, pp 557–582

    Google Scholar 

  • Wessel P, Müller R (2007) Plate tectonics. In: Watts AB (ed) Crust and lithosphere dynamics, Treatise of Geophysics, vol 6. Elsevier, Amsterdam, pp 6.02, 49–98

    Google Scholar 

  • Wiegert R, Oeschger J, Tuovila E (2007) Demonstration of a novel manportable magnetic STAR technology for real time localization of unexploded ordnance, in Proceedings of MTS/IEEE Oceans 2007

    Google Scholar 

  • Wilkins J, Heidrick T (1995) Post Laramide extension and rotation of porphyry copper deposits, southwestern United States. In: Pierce FW, Bolm JG (eds) Porphyry copper deposits of the American Cordillera, Arizona Geological Society Digest 20, pp 109–127

    Google Scholar 

  • Xu-Zhi H, Ming-Jie X, Xiao-An X, Liang-Shu W, Qing-Long Z, Shao-Wen L, Guo-Ai X, Chang-Ge F (2006) A characteristic analysis of aeromagnetic anomalies and Curie point isotherms in Northeast China. Chinese J Geophys Chinese Edn 49(6):1674–1681

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of the SERPENT proposal team, especially R. Blakely (USGS) for Fig. 13.5, Fig. 13.6, and Fig. 13.7 and R. Bracken (USGS) for Fig. 13.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Purucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Purucker, M.E., Clark, D.A. (2011). Mapping and Interpretation of the Lithospheric Magnetic Field. In: Mandea, M., Korte, M. (eds) Geomagnetic Observations and Models. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9858-0_13

Download citation

Publish with us

Policies and ethics