Skip to main content

Biodegradation of Organic Xenobiotic Pollutants in the Rhizosphere

  • Chapter
  • First Online:
Organic Xenobiotics and Plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 8))

Abstract

Soil contamination by xenobiotic organic compounds is a serious problem in most industrialized countries, causing acute and diffuse contamination of soil and waters on a global scale. Microbial transformation plays a major role in contaminant degradation of many persistent organic pollutants (POPs). However, microbial degradation can be limited by factors such as contaminant ­bioavailability, - ­adsorption and mass transfer, while combined plant-microbial systems can overcome these drawbacks, leading to more efficient contaminant degradation at the soil-root interface or rhizosphere. Hypotheses that support improved degradation within the rhizosphere compared to nonvegetated soils include (i) increase in microbial density, diversity and/or metabolic activity, (ii) catabolic enzyme induction, (iii) co-metabolism of contaminants with similar structures to rhizodeposits, (iv) improved contaminant bioavailability, and (v), selective increase in the number and activity of pollutant degraders. Root exudates or rhizodeposits not only provide a nutrient-rich habitat for microorganisms but can potentially enhance biodegradation of xenobiotics in different ways: they may facilitate the co-metabolic transformation of pollutants with similar structures, induce genes encoding enzymes involved in the degradation process, increase contaminant bioavailability, and/or selectively increase the number and activity of pollutant degraders in the rhizosphere. The combination of microbial bioremediation and phytoremediation in this complementary manner is known as rhizoremediation, phytostimulation or rhizosphere bioremediation. Bacteria, fungi and mycorrhizal fungi are a major component of the rhizosphere and form mutualistic associations with most plant species and their involvement in the biotransformation and biodegradation of various xenobiotic organic compounds is discussed. The diversity of bacterial and fungal genes and degradation pathways expressed in the rhizosphere is potentially huge, and the ways in which plants and associated symbionts enhance biodegradation remains much unexplored. Although a wide range of microbes able to degrade highly stable, toxic organic compounds such as polycyclic and aliphatic hydrocarbons have been discovered, the environmental pollution caused by these compounds remains an unsolved problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh V, Singh A, Singh N, Srivastava SC (2008) Occurrence and distribution of hexachlorocyclohexane isomers in vegetation samples from a contaminated area. Chemosphere 72:79–86

    Article  PubMed  CAS  Google Scholar 

  • Adam G, Duncan H (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370

    Article  PubMed  CAS  Google Scholar 

  • Aguirre de Cárcer D, Mart M, Mackova M, Macek T, Karlson U, Rivilla R (2007a) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  CAS  Google Scholar 

  • Aguirre de Cárcer D, Martín M, Karlson U, Rivilla R (2007b) Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. Appl Environ Microbiol 73:6224–6232

    Article  CAS  Google Scholar 

  • Alexander IJ (2007) A knight of symbiosis. New Phytol 176(3):499–501

    Article  PubMed  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental ­pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  PubMed  CAS  Google Scholar 

  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell-Amico E, Colombo M, Gianfreda L (2004) Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57:401–412

    Article  PubMed  CAS  Google Scholar 

  • Anderson TA, Coats JR (1995) Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J Environ Sci Heal B 30:473–484

    Article  Google Scholar 

  • Anderson T, Guthrie E, Walton B (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31(4):388–406

    Article  PubMed  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms, Chapter 6. In: Allen MF (ed) Mycorrhizal functioning, an integrative plant-fungal process. Routledge/Chapman & Hall, New York, pp 163–198

    Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular ­mycorrhizas. Plant Physiol 124:949–958

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in ­rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Banks MK, Govindaraju RS, Schwab AP, Kulakow P (2000) Field demonstration. In: Fiorenza S, Oubre CL, Ward CH (eds) Phytoremediation of hydrocarbon-contaminated soil. CRC Press, Boca Raton, FL, pp 3–88

    Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. Proceedings of the International Workshop on Plant Growth-Promoting Rhizobacteria, OECD, Paris, France, pp 150–158

    Google Scholar 

  • Barkay T, Navon-Venezia S, Ron E, Rosenberg E (1999) Enhancement of solubilization and ­biodegradation of polyaromatic hydrocarbons by the bioemulsifi er alasan. Appl Environ Microbiol 65:2697–2702

    PubMed  CAS  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root ­systems: scale, mechanisms and consequences. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkäuser Verlag, Basel, Berlin, Germany, pp 71–85

    Google Scholar 

  • Binet P, Portal JM, Leval C (2000) Dissipation of 3–6 ring polycyclic aromatic in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    Article  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Boyle JJ, Shann JR (1998) The influence of planting and soil characteristics on mineralization of 2, 4, 5-T in rhizosphere soil. J Environ Q 27:704–709

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Calvelo-Pereira R, Camps-Arbestain M, Rodríguez-Garrido B, Macías F, Monterroso C (2006) Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil-plant system of a contaminated site. Environ Pollut 144:210–217

    Article  PubMed  CAS  Google Scholar 

  • Campanella BF, Bock C, Schroeder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs – potential and limitations. ESPR 9:73–85

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Chang YY, Corapcioglu MY (1998) Plant-enhanced subsurface bioremediation of nonvolatile hydrocarbons. J Environ Eng ASCE 124:162–169

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. ESPR 12:34–48

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Fazlurrahman Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:95–113

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2002) Plant-root-soil contaminant specificity affects phytoremediation of organic contaminants. International Journal of Phytoremediation 4(1):17–26

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, SSSA Special Publication No. 49. Soil Science Society of America, Madison, WI, pp 247–272

    Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Fließbach A, Winkler M, Lutz MP, Oberholzer H-R, Maeder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623

    Article  PubMed  Google Scholar 

  • Frick C, Farrell R, Germida J (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-conatminated sites. Petroleum Technology Alliance of Canada (PTAC), Calgary, AB, Canada

    Google Scholar 

  • Gaskin S, Soole K, Bentham R (2008) Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytoremediation 10:378–389

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Junco ME, de Olmedo E, Ortega-Calvo JJ (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569

    Article  PubMed  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial. New Phytologist 147:13–31

    Article  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63:1933–1938

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L (2002) Arbuscular mycorrhizal fungal mycelium: from ­germlings to hyphal networks (Chapter 4). In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkäuser Verlag, Berlin, Germany, pp 49–58

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theory Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant-growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in tree, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Green NA, Meharg AA, Till C, Troke J, Nicholson JK (1999) Degradation of 4-Fuorobiphenyl by mycorrhizal fungi as determined by 19F nuclear magnetic resonance spectroscopy and 14C radiolabelling analysis. Appl Environ Microbiol 65:4021–4027

    PubMed  CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  PubMed  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating land-farming. Chemosphere 70:135–143

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Birch P, Palmer J (1996) Land restoration and reclamation: principles and practice. Addison Wesley Longman Ltd, Harlow, England

    Google Scholar 

  • He YH, Shen DS, Hu LF, Zhu YM (2007) Study on metsulfuron-methyl degradation in simulated wheat (Triticum asetivum L.) rhizospheric soil with Penicillium sp inoculation. Water Air Soil Pollut 179:297–307

    Article  CAS  Google Scholar 

  • Heggo A, Angle A, Chaney RL (1990) Effects of vesicular arbuscular mycorrhizal fungi on heavy metal uptake of soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger Ph., and Courchesne F (2008) Mobility and bioavailability of heavy metals and metalloids at the soil-root interface. p. 267–311 In: Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. A. Violante, P.M. Huang and G. M. Gadd (eds.), Wiley-IUPAC Series, John Wiley & Sons, New Jersey.

    Google Scholar 

  • Ho CH, Applegate B, Banks MK (2007) Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytoremediation 9(2):107–14

    Article  PubMed  CAS  Google Scholar 

  • Holoubek I (2001) Polychlorinated biphenyl (PCB) contaminated sites worldwide. In: Robertson LW, Hansen LG (eds) Recent advances in environmental toxicology and health effects. The University Press of Kentucky, Lexington, pp 17–26

    Google Scholar 

  • Hua Y, Minghiu Z, Yongguan Z (2008) Tracing the behaviour of hexachlorobenzene in a paddy soil-rice system over a growth season. J Environ Sci 20:56–61

    Article  Google Scholar 

  • Huang Y, Chen Y, Tao S (2002) Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation changes in rhizosphere. Chin J Appl Ecol 13:859–862

    CAS  Google Scholar 

  • Hutchinson S, Scwab A, Banks M (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon S, Schnoor J (eds) Phytoremediation: transformationa in control of contaminants. John Wiley, Hoboken, NJ, pp 355–386

    Google Scholar 

  • Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Fritz E, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizaes. J Plant Physiol 153:97–104

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Roos P, Jansa J, Frossard E, Leyval C, Jakobsen I (2004) No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ Microbiol 70:6512–6517

    Article  PubMed  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Miyeshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55:110–119

    Article  CAS  Google Scholar 

  • Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76:709–717

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul O, Elad Y, Chet I, Okon Y (1996) Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 133:59–64

    Article  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular weight PAHs by bacteria. J Bacteriol 182:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Kamath R, Schnoor JL, Alvarez PJJ (2005) Rhizodeposition on the fate of phenanthrene in aged contaminated soil. Environ Sci Technol 39:9669–9675

    Article  PubMed  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal ­contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudry CS, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kidd PS, Prieto-Fernández A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Laheurte F, Leyval C, Berthelin J (1990) Root exudates of maize, pine and beech seedlings ­influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111

    Google Scholar 

  • Larsen J, Cornejo P, Miguel Barea J (2009) Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus ­polymyxa and P-macerans in the mycorrhizosphere of Cucumis sativus. Soil Biol Biochem 41:286–292

    Article  CAS  Google Scholar 

  • Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  PubMed  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated bipenyl (PCB)- degrading bacteria associated with trees in a PCB contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou JH, Tiedje TM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Jones EJ, Del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation (Chapter 14). In: Gianinazzi S, Schüepp H, Barea JM, Hasewandter K (eds) Mycorrhizal technology in agriculture. Birkäuser Verlag, Berlin, Germany, pp 175–186

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspect. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorous and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779

    PubMed  CAS  Google Scholar 

  • Liste HH, Alexander M (2000) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Jiang C, Liu X, Wu J, Han J, Liu S (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp strain CNB-1. Environ Microbiol 9:465–473

    Article  PubMed  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699

    Article  PubMed  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva KA, Rangel AOSS, Pissarra J, Castro PML (2008) EDDS and EDTA-enhanced zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil. Chemosphere 70:1002–1014

    Article  PubMed  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce Cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • McFarland VA, Clarke JU (1989) Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ Health Perspect 81:225–239

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas-extending the capacities of rhizosphere ­remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Miya KR, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Mrozik A, Labuzek S, Piotrowska-Seget Z (2005) Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiol Res 160:149–157

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid Heipieper HJ (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71:6606–6612

    Article  PubMed  CAS  Google Scholar 

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Microbial populations in the rhizosphere of contaminated soils. Water Air Soil Pollut 95:165–178

    CAS  Google Scholar 

  • Nicolotti G, Egli S (1998) Soil contamination by crude oil: impact of the mycorrhizosphere and the revegetation potential of forest trees. Environ Pollut 99:37–43

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005a) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005b) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31

    Article  PubMed  CAS  Google Scholar 

  • Olson et al (2008) Effects of Agronomic Practices on Phytoremediation of an Aged PAH-Contaminated Soil. J Environ Qual 37:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Pereira RC, Monterroso C, Macías F, Camps-Arbestain M (2008) Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site. Environ Pollut 155:350–358

    Article  PubMed  CAS  Google Scholar 

  • Pichtel J, Liskanen P (2001) Degradation of diesel fuel in rhizosphere soil. Environ Eng Sci 18:145–157

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for ­treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480

    Article  CAS  Google Scholar 

  • Ramos JL, Duque E, Pv D, Daniels C, Krell T, Espinosa-Urgel M, Ramos-Gonzalez M-I, Rodriguez S, Matilla M, Wittich R et al (2008) Removal of hydrocarbons and other related chemicals via the rhizosphere of plants. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids, and derived compounds. Springer, Heidelberg, Germany

    Google Scholar 

  • Reed MLE, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek 86:1–25

    Article  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ Microbiol 6(6):574–583

    Article  PubMed  Google Scholar 

  • Rillig MC, Mummey DI (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Garrido B (2003) Isómeros HCH: retención en Suelo y Deshalogenación reductiva en medio abiótico. Universidad de Santiago de Compostela, Tesina (in Spanish)

    Google Scholar 

  • Rosenberg E, Barkai T, Navon-Venezia S, Ron EZ (1999) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R (ed) Novel approaches for bioremediation of organic pollution. Kluwer/Plenum Publishers, New York, pp 171–180

    Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated ­biofilms. FEMS Microbiol Ecol 64:153–166

    Article  PubMed  CAS  Google Scholar 

  • Safe SH (1994) Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149

    Article  PubMed  CAS  Google Scholar 

  • Sainz MJ, González-Penalta B, Vilariño A (2006) Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. Eur J Soil Sci 57:83–90

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental ­pollution and bioremediation. Trends Biotech 20:243–248

    Article  CAS  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SA, Wolfe NL Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  Google Scholar 

  • Schwab AP, Al-Assi AA, Banks MK (1998) Adsorption of naphthalene onto plant roots. J Environ Qual 27:220–224

    Article  CAS  Google Scholar 

  • Schwitzguébel J-P, Meyer J, Kidd P (2006) Pesticides removal using plants: phytodegradation versus phytostimulation. In: Mackova M, Dowling DN, Macek T (eds) Phytoremediation and rhizoremediation theoretical background, vol 9A. Springer, The Netherlands, pp 179–198

    Chapter  Google Scholar 

  • Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of gram-­negative bacteria to organic solvents. Environ Microbiol 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks MK, Greer CW (2003) Changes in microbial community ­composition and function during polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    Article  PubMed  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    PubMed  CAS  Google Scholar 

  • Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  • Sipila TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjala K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of IE3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis; plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London, UK

    Google Scholar 

  • Stegeman JJ, Schlezinger JJ, Craddock JE, Tillitt DE (2001) Cytochrome P450 1A expression in mid water fishes: potential effects of chemical contaminants in remote oceanic zones. Environ Sci Technol 35:54–62

    Article  PubMed  CAS  Google Scholar 

  • Sue YH, Zu YG (2007) Transport mechanisms for the uptake of organic compounds by rice (Oryzia sativa) roots. Environ Pollut 148:94–100

    Article  CAS  Google Scholar 

  • Sue YH, Yang XY (2009) Intercations between selected PAHs and the microbial community in rhizosphere of a paddy soil. Sci Total Environ 407:1027–1034

    Article  CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  CAS  Google Scholar 

  • Van der Krift TAJ, Kuikman PJ, Berendse F (2002) The effect of living plants on root decomposition of four grass species. Oikos 96:36–45

    Article  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J et al (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, usi.ng a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  PubMed  CAS  Google Scholar 

  • Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Volkering F, Breure AM, Andel JGV, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61:1699–1705

    PubMed  CAS  Google Scholar 

  • Walker T, Bais H, Grotewold E, Vivanco J (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Walton BA, Guthrie EA, Christman RF (1994) Rhizosphere microbial communities as a plant defence against toxic substances in soils. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 82–92

    Chapter  Google Scholar 

  • Watkins JW, Sorensen DL, Sims RC (1994) Volatilization and mineralization of naphaltene in soil-grass microorganism. In: Anderson TA, Coats JR (eds) Bioremediation through Rhizosphere Technology, ACS Symposium Series 563. American Chemical Society, Washington, DC, pp 123–131

    Chapter  Google Scholar 

  • White JC, Ross DW, Gent MPN, Eitzer BD, Mattina MJ (2006) Effect of mycorrhizal fungi on the phytoextraction of weathered p, p-DDE by Curcubita pepo. J Hazard Mat B137:1757–1757

    Google Scholar 

  • White JC, Parrish ZD, Gent MPN, Iannucci-Berger W, Eitzer BD, Isleyen M, Mattina MI (2006) Soil amendments, plant age, and intercropping impact p,p ‘-DDE bioavailability to Cucurbita pepo. Journal of Environmental Quality 35:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Whitfield Aslund ML, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ 405(1–3):14–25

    PubMed  CAS  Google Scholar 

  • Wild E, Dent J, Tomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism with plant roots. Environ Sci Technol 39:3695–3702

    Article  PubMed  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  PubMed  CAS  Google Scholar 

  • Xu SY, Chen YX, Lin Q, Wang WX, Xie SG, Shen CF (2005) Uptake and accumulation of phenanthrene and pyrene in spiked soils by ryegrass (Lolium perenne L). J Environ Sci 17:817–822

    CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118

    PubMed  CAS  Google Scholar 

  • Yoshitomi KJ, Shann JR (2001) Corn (Zea mays L) root exudates and their impact on 14C-Pyrene mineralization. Soil Biol Biochem 33:1769–1776

    Article  CAS  Google Scholar 

  • Yu-Hong S, Yong-Guan Z (2008) Uptake of selected PAHs from contaminated soils by rice ­seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environ Pollut 155:359–365

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica ­juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M (2007) Hydrocarbon ­degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 47:534–539

    Article  PubMed  CAS  Google Scholar 

  • Zeinali M, Vossoughi M, Ardestani SK (2008) Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere 72:905–909

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Zhu L (2009) Sorption of polycyclic aromatic hydrocarbons to carbohydrates and lipids of ryegrass root and implications for a sorption model. Environ Sci Technol 43:2740–2745

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Azaizeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Azaizeh, H., Castro, P.M.L., Kidd, P. (2011). Biodegradation of Organic Xenobiotic Pollutants in the Rhizosphere. In: Schröder, P., Collins, C. (eds) Organic Xenobiotics and Plants. Plant Ecophysiology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9852-8_9

Download citation

Publish with us

Policies and ethics