Skip to main content

Trichloroacetic Acid in the Forest Ecosystem

  • Chapter
  • First Online:
Organic Xenobiotics and Plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 8))

  • 1218 Accesses

Abstract

Trichloroacetic acid (TCA) is a ubiquitous phytotoxic substance that occurs at various levels in the environment. The last century, it was produced and used in agriculture as herbicide against perennial grasses for some time, before it was found as secondary atmospheric pollutant. It was considered a reason of coniferous forest decline. TCA was further found among products of disinfection of drinking water and of delignification of cellulose pulp by chlorine. In addition to these anthropogenic sources of TCA, is has been found to be formed in the forest ecosystem as a result of microbial chlorination of humic substances that subsequently yield TCA in the soil. TCA may be considered important intermediate of soil organic matter degradation and belongs thus to naturally-produced organohalogens and at the same time to relevant xenobiotics and stressors affecting plants in the forest ecosystem. Its role in the forest ecosystem is clearly shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åberg B (1982) Plant growth regulators. XLIV. Some aliphatic acids. Swedish J Agric Res 12:51–61

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation. Academic, San Diego, CA, 453

    Google Scholar 

  • Ashton FM, Crafts AS (1973) Mode of action of herbicides. Wiley, New York, pp 110–125

    Google Scholar 

  • Blanchard FA (1954) Uptake, distribution and metabolism of carbon-14 labelled trichloroacetate in corn and pea plants. Weeds 3:274–278

    Article  Google Scholar 

  • Bowden DJ, Clegg SL, Brimblecombe P (1998) The Henry’s law constant of trichloroacetic acid. Water Air Soil Pollut 101:197–215

    Article  CAS  Google Scholar 

  • Böger P, Matthes B, Schmalfuß J (2000) Towards the primary target of chloroacetamides -new findings pave the way. Pest Mgane Sci 56:497–508

    Article  Google Scholar 

  • Bubner M, Fuksová K, Matucha M, Heise KH, Bernhard G (2001) Synthesis of [1, 2–14C]trichloroacetic acid. J Labelled Cpd Radiopharm 44:811–814

    Article  CAS  Google Scholar 

  • Cape JN, Reeves NM, Schröder P, Heal MR (2003) Long-term exposure of Sitka spruce seedlings to trichloroacetic acid. Environ Sci Technol 37:2953–2957

    Article  PubMed  CAS  Google Scholar 

  • Cape JN, Forczek ST, Gullner G, Mena-Benitez G, Schröder P, Matucha M (2006) Progress in understanding the sources, deposition, and above-ground fate of trichloroacetic acid. ESPR 13:276–286

    Article  PubMed  CAS  Google Scholar 

  • Clarke N, Fuksová K, Gryndler M, Lachmanova Z, Liste H-H, Rohlenova J, Schroll R, Schröder P, Matucha M (2009) The formation and fate of chlorinated organic substances in temperate and boreal forest soils. ESPR 16:127–143

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ballapragada BS, Puhakka JA, Strand SE, Ferguson JF (1999) Anaerobic transformation of 1, 1, 1-trichloroethane by municipal digester sludge. Biodegradation 10:297–305

    Article  PubMed  CAS  Google Scholar 

  • Chow PNP (1976) Distribution of 14C residue of TCA-14C in vegetative and grain parts of oat and wheat. Can J Plant Sci 56:39–43

    Article  CAS  Google Scholar 

  • Coufal D, Matucha P, Uhlířová H, Lomský B, Forczek ST, Matucha M (2003) Analysis of coniferous forest damage: effects of trichloroacetic acid, sulphur, fluorine and chlorine on needle loss of Norway spruce. Neural Network World 13:89–102

    Google Scholar 

  • Crutzen PJ (1996) Mein Leben mit O3, NOx und anderen YZOx-Verbindungen (Nobel-Vortrag). Angew Chemie 108:1878–1898

    Article  Google Scholar 

  • De Jong E, Field JA (1997) Sulfur taft and turkey tail: biosynthesis and biodegradation of organohalogenes by Basidiomycetes. Annu Rev Microbiol 51:357–414

    Google Scholar 

  • Dickey CA, Heal KV, Stidson RT, Koren R, Schröder P, Cape JN, Heal MR (2004) Trichloroacetic acid cycling in Sitka spruce saplings (Picea sitchensis) and the effects on tree health following long term exposure. Environ Poll 130:165–176

    Article  CAS  Google Scholar 

  • Ellis DA, Hanson ML, Sibley PK, Shahid T, Fineberg NA, Solomon KR, Muir DCG, Mabury SA (2001) The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere 42:309–318

    Article  PubMed  CAS  Google Scholar 

  • Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52:513–520

    Article  PubMed  CAS  Google Scholar 

  • Forczek ST, Matucha M, Uhlířová H, Albrechtová J, Fuksová K, Schröder P (2001) Biodegradation of trichloroacetic acid in Norway spruce/soil-system. Biologia Plantarum 44:317–320

    Article  CAS  Google Scholar 

  • Forczek ST, Uhlířová H, Gryndler M, Albrechtová J, Fuksová K, Vágner M, Schröder P, Matucha M (2004) Trichloroacetic acid in Norway spruce/soil system. II: Distribution and degradation in the plant. Chemosphere 56:327–333

    Article  PubMed  CAS  Google Scholar 

  • Forczek ST, Schröder P, Weissflog L, Krüger G, Rohlenová J, Matucha M (2008) Trichloroacetic acid of different origin in Norway spruce needles and chloroplasts. Biol Plantarum 52:177–180

    Article  CAS  Google Scholar 

  • Franich RA, Wells LS (1980) Inhibition of Pinus radiata needle epicuticular wax biosynthesis by trichloroacetate. J Exp Bot 31:829–838

    Article  CAS  Google Scholar 

  • Frank H (1984) Waldschäden durch Photooxidantien? Nachr Chem Tech Lab 32:298–305

    CAS  Google Scholar 

  • Frank H, Frank W (1985) Chlorophyll-bleaching by atmospheric pollutants and sunlight - a probable cause of tree damages observed in recent years. Naturwissenschaften 72:139–141

    Google Scholar 

  • Frank H (1988) Trichloressigsäure im Boden: eine Ursache neuartiger Waldschäden. Nachr Chem Tech Lab 36:889

    CAS  Google Scholar 

  • Frank H, Vital J, Frank W (1989) Oxidation of airborne C2-chlorocarbons to trichloroacetic and dichloroacetic acid. Fresenius J Anal Chem 333:713

    Article  Google Scholar 

  • Frank H, Vincon A, Reiss J, Scholl H (1990) Trichloroacetic acid in the foliage of forest trees. J High Resol Chromatogr 13:733–736

    Article  CAS  Google Scholar 

  • Frank H (1991) Airborne chlorocarbons, photooxidants, and forest decline. Ambio 20:13–18

    Google Scholar 

  • Frank H, Frank W, Neves HJC (1991) Airborne C-1-halocarbons and C-2-halocarbons at four representative sites in Europe. Atmos Environ 25A:257–261

    CAS  Google Scholar 

  • Frank H, Scholl H, Sutinen S, Norokorpi Y (1992) TCA in conifer needles in Finland. Ann Bot Fennici 29:263–267

    CAS  Google Scholar 

  • Frank H, Scholl H, Renschen D, Rether B, Laouedj A, Norokorpi Y (1994) Haloacetic acids, phytotoxic secondary air pollutants. Environ Sci Pollut Res 1:4–14

    Article  CAS  Google Scholar 

  • Franklin J (1994) The atmospheric degradation and impact of perchloroethylene. Toxicol Environ Chemis 46:169–182

    Article  CAS  Google Scholar 

  • Fritsche W (1998) Umwelt-Mikrobiologie. Gustav Fischer Verlag, Jena, p 252

    Google Scholar 

  • Gaggi C, Bacci E, Calamari D, Fanelli R (1985) Chlorinated hydrocarbons in plant foliage: an indication of the tropospheric contamination level. Chemosphere 14:1673–1686

    Article  CAS  Google Scholar 

  • Garcia JP, Beyne-Masclet S, Mouvier G, Masclet P (1992) Emissions of volatile compounds by coal-fired power stations. Atmos Environ 26A:1582–1592

    Google Scholar 

  • Gay BJW, Hanst PL, Bufalini JJ, Noonan RC (1976) Atmospheric oxidation of chlorinated ethylenes. Environ Sci Technik 10:58–67

    Google Scholar 

  • Gribble WG (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    Article  PubMed  CAS  Google Scholar 

  • Grimmer G, Schmidt W (1986) Modellversuche zur Phytotoxizität von Halogenkohlenwasserstoffen. Angew Chemie 98(9):807–808

    Article  CAS  Google Scholar 

  • Gullvåg, BM, Frank H, Norokorpi Y (1996) Secondary air pollutants – epistomal wax erosion of Scote pine needles. Environ Sci Pollut Res 3:159–162

    Article  CAS  Google Scholar 

  • Haiber G, Jacop G, Niedan V, Nkusi G, Schöler HF (1996) The occurrence of trichloroacetic acid (TCAA) – indications of a natural production? Chemosphere 33:839–849

    Article  CAS  Google Scholar 

  • Haselman KF, Laturnus F, Svensmark B, Groen C (2000) Formation of chloroform in spruce forest soil – results from laboratory incubation studies. Chemosphere 41:1769–1774

    Google Scholar 

  • Heal MR, Dickey CA, Cape JN, Heal KV (2003a) The routes and kinetics of trichloroacetic acid uptake and elimination in Sitka spruce (Picea sitchensis) saplings via atmospheric deposition pathways. Atmos Environ 37:4447–4452

    Article  CAS  Google Scholar 

  • Heal MR, Reeves NM, Cape JN (2003b) Atmospheric concentrations and deposition of trichloroacetic acid in Scotland: results from a two year sampling campaign. Environ Sci Technol 37:2627–2633

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra EJ, de Leer EWB, Brinkman UAT (1998) Natural formation of chloroform and brominated trihalomethanes in soil. Environ Sci Technik 32:3724–3729

    Google Scholar 

  • Hoekstra EJ, De Leer EWB, Brinkman UATh (1999) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38:2875–2883

    Article  CAS  Google Scholar 

  • Hoekstra EJ (2003) Review of concentrations and chemistry of trichloroacetate in the environment. Chemosphere 52:355–369

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Kutsuna S, Ibusuki T (1994) A product study of the OH radical initiated oxidation of perchloroethylene and trichlorethylene. Chemosphere 28:2029–2040

    Google Scholar 

  • Juuti S, Hirvonen A, Tarhanen J, Holopainen JK, Ruuskanen J (1993) Trichloroacetic acid in pine needles in the vicinity of a pulp mill. Chemosphere 26:1859–1868

    Article  Google Scholar 

  • Juuti S, Norokorpi Y, Ruuskanen J (1995) Trichloroacetic-acid (TCA) in pine needles caused by atmospheric emissions of kraft pulp-mills. Chemosphere 30:439–448

    Article  CAS  Google Scholar 

  • Juuti S, Norokorpi Y, Helle T, Ruuskanen J (1996) Trichloroacetic acid in conifer needles and arboreal lichens in forest environments. Sci Total Environ 180:117–124

    Article  CAS  Google Scholar 

  • Juuti S (1997) Trichloroacetic acid in forest environment. Thesis University of Kuopio

    Google Scholar 

  • Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes dutiny degradation of organic matter. Nature 403:298–301

    Google Scholar 

  • Laniewski K, Boren H, Grimvall A (1999) Fractionation of halogenated organic matter present in rain and snow. Chemosphere 38:393–409

    Article  PubMed  CAS  Google Scholar 

  • Laturnus F, Fahimi I, Gryndler M, Hartman A, Heal MR, Matucha M, Schöler HF, Schroll R, Svensson T (2005) Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil. ESPR 12:233–244

    Article  PubMed  CAS  Google Scholar 

  • Leach LH, Zhang P, Lapara TM, Hozalski RM, Camper AK (2009) Detection and enumeration of haloacetic acid-degrading bacteria in drinking water distribution systems using dehalogenase genes. J Appl Microbiol 107:978–988

    Article  PubMed  CAS  Google Scholar 

  • Lewis TE, Wolfinger TF, Barta ML (2004) The ecological effects of trichloroacetic acid in the environment. Environ Int 30:1119–1150

    Article  PubMed  CAS  Google Scholar 

  • Lignell R, Heinonen-Tanski H, Uusi-Rauva A (1984) Degradation of trichloroacetic acid (TCA) in soil. Acta Agric Scand 34:3–8

    Article  CAS  Google Scholar 

  • Lode O (1967) Microbial decomposition of trichloroacetic acid. Acta Agric Scand 17:140–148

    Article  CAS  Google Scholar 

  • Macey MJK (1974) Wax synthesis in Brassica oleracea as modified by trichloroacetic acid and glossy mutations. Phytochem 13:1353–1358

    Article  CAS  Google Scholar 

  • Martin H (1972) Pesticide manual: basic information on the chemicals used as active components of active pesticides, 3rd edn. British Crop Protection Council, England, pp 535

    Google Scholar 

  • Matucha M, Uhlířová H (1999) Sekundární atmosférické polutanty a zdravotní stav lesa:cesta, příjem a osud kyseliny trichloroctové ve smrku ztepilém (Picea abies) , Ovzduší ´99,konf. Brno,7.-9.2.1999,Sborník konf str 86–90

    Google Scholar 

  • Matucha M, Uhlířová H, Bubner M (2001) Investigation of uptake, translocation and fate of trichloroacetic acid in Norway spruce (Picea Abies/L./Karst.) using 14C- labelling. Chemosphere 44:217–222

    Article  Google Scholar 

  • Matucha M, Forczek ST, Gryndler M, Uhlířová H, Fuksová K, Schröder P (2003a) Trichloroacetic acid in Norway Spruce/soil-system I. Biodegradation in soil. Chemosphere 50:303–309

    Article  PubMed  CAS  Google Scholar 

  • Matucha M, Gryndler M, Forczek ST, Uhlířová H, Fuksová K, Schröder P (2003b) Chloroacetic acids in environmental processes. Environ Chem Lett 1:127–130

    Article  CAS  Google Scholar 

  • Matucha M, Rohlenová J, Forczek ST, Uhlířová H, Gryndler M, Fuksová K, Schröder P (2006) Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36. Chemosphere 63:1924–1932

    Article  PubMed  CAS  Google Scholar 

  • Matucha M, Gryndler M, Schröder P, Forczek ST, Uhlířová H, Fuksová K, Rohlenová J (2007a) Chloroacetic acids - degradation intermediates of organic matter in forest soil. Soil Biol Biochem 39:382–385

    Article  CAS  Google Scholar 

  • Matucha M, Gryndler M, Forczek ST, Schröder P, Bastviken D, Rohlenová J, Uhlířová H, Fuksová K (2007b) A chlorine-36 and carbon-14 study of the role of chlorine in the forest ecosystem. J Labelled Cpd Radioph 50:437–439

    Article  CAS  Google Scholar 

  • McCulloch A (2002) Trichloroacetic acid in the environment. Chemosphere 47:667–686

    Article  PubMed  CAS  Google Scholar 

  • McCulloch A, Midgley PM (1996) The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988–1992. Atmosph Environ 30:601–608

    Google Scholar 

  • McGrath D (1976) Factors that influence the persistence of TCA in soil. Weed Res 16:131–137

    Article  CAS  Google Scholar 

  • Mohn WW (2004) Biodegradation and bioremediation of halogenated organic compounds. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer-Verlag, Heidelberg, pp 125–148

    Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Norokorpi Y, Frank H (1993) Effect of stand density on damage to birch (Betula pubescens) caused by phytotoxic air-pollutants. Ann Bot Fennici 30:181–187

    CAS  Google Scholar 

  • Norokorpi Y, Frank H (1995) Trichloroacetic acid as a phytotoxic air pollutant and the dose-response relationship for defoliation of Scots pine. Sci Total Environ 160/161:459–463

    Article  Google Scholar 

  • Olarinan AO, Babalola GO, Okoh AI (2001) Aerobic dehalogenation potentials of four bacterial species isolated from soil and sewage sludge. Chemosphere 45:45–50

    Google Scholar 

  • van Pee K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312

    Article  PubMed  CAS  Google Scholar 

  • Peters RJB (2003) Chloroacetic acids in Europian soils. J Environ Monitor 5:275–280

    Article  PubMed  CAS  Google Scholar 

  • Plümacher J, Renner I, Schröder P (1993) Volatile chlorinated hydrocarbons and trichloroacetic acid in conifer needles, in volatile organic pollutants: levels, fate and ecotoxicological impacts. Schröder P, Frank H, Rether B, (eds), Wiss.-Verlag Dr.W.Maraun, Frankfurt/M., Germany, pp 37–51

    Article  Google Scholar 

  • Plümacher J, Schröder P (1994) Accumulation and fate of C1/C2-chlorocarbons and trichloroacetic acid in spruce needles from an Austrian mountain site. Chemosphere 29:2467–2476

    Article  Google Scholar 

  • Plümacher J, Wolf AE, Schröder P (1994) Accumulation of C1/C2-chlorocarbons and trichloroacetic acid and a possible correlation with glutathione S-transferases in conifer needles. Phyton Int J Exp Bot 34S:141–154

    Google Scholar 

  • Reeves NM, Heal MR, Cape JN (2000) A new method for the determination of trichloroacetic acid in spruce foliage and other environmental media. J Environ Monit 5:447–450

    Article  PubMed  CAS  Google Scholar 

  • Römpp A, Klemm O, Fricke W, Frank H (2001) Haloacetates in fog and rain. Environ Sci Technik 35:1294–1298

    Google Scholar 

  • Rudolph J, von Czapiewski K, Koppmann R (2000) Emissions of methyl chloroform (CH3CCl3) from biomass burning and the tropospheric methyl chloroform budget. Geophys Res Lett 27:1887–1890

    Article  CAS  Google Scholar 

  • Schöler HF, Keppler F, Fahimi IJ, Niedan VW (2003) Fluxes of trichloroacetic acid between atmosphere, biota, soil and groundwater. Chemosphere 52:339–354

    Article  PubMed  CAS  Google Scholar 

  • Schröder P (1997) Fate of Glutathione S-conjugates in plants: Cleavage of the glutathione moiety. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, The Netherlands, pp 233–244

    Google Scholar 

  • Schröder P (1998) Halogenated air pollutants. In: DeKok LJ, Stuelen I (eds) Responses of plant metabolism to air pollution. Backhuys Publ Leiden, The Netherlands, pp 131–145

    Google Scholar 

  • Schröder P, Juuti S, Roy S, Sandermann H, Sutinen S (1997) Exposure to chlorinated acetic acids: responses of peroxidase and glutathione S-transferase activity in pine needles. ESPR 4:163–171

    Article  PubMed  Google Scholar 

  • Schröder P, Matucha M, Forczek ST, Uhlířová H, Fuksová K, Albrechtová J (2003) Uptake, translocation and fate of trichloroacetic acid in Norway spruce/soil system. Chemosphere 52:437–442

    Article  PubMed  CAS  Google Scholar 

  • Schröder P, Plümacher J (1998) Evaluation of the impact of volatile chlorinated hydrocarbons on forest trees based on air and needle measurement data and the detoxification capacity of spruce needles. ESPR S1:38–45

    Google Scholar 

  • Sidebotton H, Franklin J (1996) The atmospheric fate and impact of hydrochloroflurocarbons and chlorinated solvents. Pure & Appl. Chen 68:1757–1769

    PubMed  Google Scholar 

  • Sinkkonen S, Rantio T, Paasivirta J, Alanko M, Lahtiperä M (1998) Chlorinated acetic and propionic acids in pine needles from industrial areas. Chemosphere 37:2653–2664

    Article  CAS  Google Scholar 

  • Smith AE (1974) Degradation of trichloroacetic acid in Saskatchewan soils. Soil Biol Biochem 6:201–202

    Article  CAS  Google Scholar 

  • Stidson RT, Dickey CA, Cape JN, Heal KV, Heal MR (2004a) Fluxes and reservoirs of trichloroacetic acid at a forest and moorland catchment. Environ Sci Technol 38:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Stidson RT, Heal KV, Dickey CA, Cape JN, Heal MR (2004b) Fluxes and budgets of trichloroacetic acid through a conifer forest canopy. Environ Poll 132:73–84

    Article  CAS  Google Scholar 

  • Süss A, Eben C (1977) Abbau von Atrazin und Nata in verschiedenen Böden. Gesunde Pflanzen 29:188–192

    Google Scholar 

  • Suntio LR, Shiu WY, Mackay D (1988) A review of the nature and properties of chemicals ­present in pulp mill effluents. Chemosphere 17:1249–1290

    Article  CAS  Google Scholar 

  • Sutinen S, Juuti S, Koivisto L, Turunen M, Ruuskanen J (1995) The uptake of and structural changes induced by trichloroacetic acid in the needles of Scots pine seedlings. J Exp Bot 46:223–1231

    Article  Google Scholar 

  • Sutinen S, Juuti S, Ryyppo A (1997) Long-term exposure of Scots pine seedlings to mono­chloroacetic and trichloroacetic acid: effects on the needles and growth. Ann Bot Fennici 34:265–273

    CAS  Google Scholar 

  • von Sydow et al. (2000) Natural background levels of trifluoracetate in rain and snow. Environ Sci Technol 34:3115–3118

    Google Scholar 

  • Tuazon EC, Atkinson R, Aschmann SM, Goodman MA, Winer AM (1988) Atmospheric reactions of chloroethenes with the OH radical. Int J Chem Kinet 20:241–265

    Google Scholar 

  • Uhlířová H, Pasuthová J, Matucha M (1995) Znečištění ovzduší a lesy. II. Chlorované sloučeniny. Zprávy lesnického výzkumu 40:30–35

    Google Scholar 

  • Uhlířová H, Matucha M, Kretzschmar M, Bubner M (1996) Aufnahme und Verteilung von Trichloressigsaeure in Trieben Norwegischer Fichte. Z Umweltchem Ökotox 8:138–142

    Article  Google Scholar 

  • Weast RC, Astle MJ, Beyer WH (1987) CRC handbook of chemistry and physics, 67th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Weightman AL, Weightman AJ, Slater JH (1992) Microbial dehalogenation of trichloroacetic acid. World J Microbiol Biotechnol 8:512–518

    Article  CAS  Google Scholar 

  • Weissflog L, Manz M, Popp P, Elansky N, Arabov A, Putz E, Schuurmann G (1999) Airborne trichloroacetic acid and its deposition in the catchment area of the Caspian Sea. Environ Poll 104:359–364

    Article  Google Scholar 

  • Weissflog L, Pfennigsdorff A, Martinez-Pastur G, Puliafito E, Figueroa D, Elansky N, Nikonov V, Putz E, Kruger G, Kellner K (2001) Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres – part I. Its formation, uptake and geographical distribution. Atmos Environ 35:4511–4521

    Article  Google Scholar 

  • Weissflog L, Elansky N, Putz E, Krueger G, Lange CA, Lisitzina L, Pfennigsdorff A (2004) Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres – part II: salt lakes as novel sources of natural chlorohydrocarbons. Atmos Environ 38:4197–4204

    Article  CAS  Google Scholar 

  • Weissflog L, Lange CA, Pfennigsdorff A, Kotte K, Elansky N, Lisitzyna L, Putz E, Krueger G (2005) Sediments of salt lakes as a new source of volatile highly chlorinated C1/C2 hydrocarbons. Geophys Res Lett 32:L01401

    Article  CAS  Google Scholar 

  • Weissflog L, Krueger G, Elansky N, Putz E, Lange CA, Lisitzina L, Pfennigsdorff A, Kotte K (2006) The phytotoxic effect of C1/C2-halocarbons and trichloroacetic acid on the steppe plant Artemisia lerchiana. Chemosphere 65:975–980

    Article  PubMed  CAS  Google Scholar 

  • Weissflog L, Krüger G, Forczek ST, Lange CA, Kotte K, Pfennigsdorff A, Rohlenová J, Fuksová K, Uhlířová H, Matucha M, Schröder P (2007) Oxidative biotransformation of tetrachloroethene in the needles of Norway spruce (Picea abies L.). South Afr J Bot 73:89–96

    Article  CAS  Google Scholar 

  • Yu JJ, Welander T (1995) Growth of an anaerobic bacterium with trichloroacetic acid as the sole source of energy and carbon. Appl Misrobiol Biotechnik 42:769–774

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Matucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Matucha, M., Schröder, P. (2011). Trichloroacetic Acid in the Forest Ecosystem. In: Schröder, P., Collins, C. (eds) Organic Xenobiotics and Plants. Plant Ecophysiology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9852-8_5

Download citation

Publish with us

Policies and ethics