Skip to main content

Oil gland secretions in Oribatida (Acari)

  • Conference paper
  • First Online:
Trends in Acarology

Abstract

The chemical ecology of Oribatida is tightly integrated with a distinct exocrine system in the opisthosoma, known as ‘oil glands‘ (syn. opisthonotal glands). Representing homologous structures, oil glands characterize the four morederived cohorts of Oribatida (Parhyposomata, Mixonomata, Desmonomata, and Brachypylida), but also theAstigmata, as the monophyletic unit of ‘glandulate Oribatida’. Generally, oil glands constitute large intima-lined sacsthat are located in the dorso-lateral regions of the idiosoma and that open to the body outside via a single (frequentlyflapped) pore on either side of the notogaster. Secretions of more than 20 oribatids have so far been analyzed. Theyconsist of hydrocarbons, terpenes, aromatics, and alkaloids. Many components occur in specific combinations; secretionprofiles characterize groups (on any taxonomic level) and have emerged as tools for phylogenetic analyses:Parhyposomata, e.g., produce phenolic- and naphthol-rich secretions, whereas a distinct set of terpenes and aromatics(the so-called ‘astigmatic compounds’) is considered synapomorphic for middle-derived Mixonomata and allgroups above (‘astigmatic compounds-bearing Oribatida’). In some subgroups of the ‘astigmatic compounds-bearingOribatida’, these components are not easily traced as they tend to be reduced and replaced by others. Functionally,oil glands produce various allomones against predators and fungi, and alarm pheromones for intraspecific communication. Pheromonal properties of oil gland compounds probably evolved early in ancient oil gland-bearing oribatids from purely defensive functions, culminating in a radiation of semiochemical roles (alarm, aggregation, sex) in oil glands of the Astigmata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti G, Norton R, Adis J et al. (1997) Porose integumental organs of oribatid mites (Acari, Oribatida). 2. Fine structure. Zoologica 146: 33–114.

    Google Scholar 

  • Balogh J & Balogh P (1992) The Oribatid Mites Genera of the World. Vol. I & II. Hungarian National Museum Press, Budapest, Hungary.

    Google Scholar 

  • Blum MS (1985) Alarm pheromones. Fundamentals of Insect Physiology (ed. by MS Blum), pp. 535–579. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Brody AR & Wharton GW (1970) Dermatophagoides farinae: ultrastructure of lateral opisthosomal dermal glands. Trans. Amer. Microsc. Soc. 89: 499–513.

    Article  CAS  Google Scholar 

  • Bull JO (1970) Deal with insect pests this way. Food Manufacture 45: 46–53.

    Google Scholar 

  • Howard RW, Kuwahara Y, Suzuki H & Suzuki T (1988) Pheromone study on acarid mites. XII. Characterization of the hydrocarbons and external morphology of the opisthonotal glands of six species of mites (Acari: Astigmata). Appl. Entomol. Zool. 23: 58–66.

    CAS  Google Scholar 

  • Kuwahara Y (1991) Pheromone studies on astigmatid mites - alarm, aggregation and sex. Modern Acarology, Vol. I (ed. by F Dusbabek & V Bukva), pp. 43–52. SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Kuwahara Y (2004) Chemical ecology of astigmatid mites. Advances in Insect Chemical Ecology (ed. by RT Cardé & JG Millar), pp. 76–109. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Kuwahara Y, Ishii S & Fukami H (1975) Neryl formate: alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae). Experientia 31: 1115–1116.

    Article  CAS  Google Scholar 

  • Kuwahara Y, Akimoto K, Leal WS et al. (1987) Isopiperitenone: a new alarm pheromone of the acarid mite, Tyrophagus similis (Acarina, Acaridae). Agric. Biol. Chem. 51: 3441–3442.

    CAS  Google Scholar 

  • Kuwahara Y, Shibata C, Akimoto K et al. (1988) Pheromone study on acarid mites. XIII. Identification of neryl formate as an alarm pheromone from the bulb mite, Rhizoglyphus robini (Acarina: Acaridae). Appl. Ent. Zool. 23: 76–80.

    CAS  Google Scholar 

  • Kuwahara Y, Satou T & Suzuki T (1991) Geranial as the alarm pheromone of Histiostoma laboratorium Hughes (Astigmata: Histiostomidae). Appl. Ent. Zool. 26: 501–504.

    CAS  Google Scholar 

  • Kuwahara Y, Koshii T, Okamoto M et al. (1991b) Chemical ecology on astigmatid mites. XXX. Neral as the alarm pheromone of Glycyphagus domesticus (De Geer) (Acarina: Glycyphagidae). Jap. J. San. Zool. 42: 29–32.

    Article  CAS  Google Scholar 

  • Leal WS, Nakano Y, Kuwahara Y et al. (1988) Pheromone study on astigmatid mites. XVII. Identification of 2-hydroxy-6-methyl-benzaldehyde as the alarm pheromone of the acarid mite Tyroglyphus perniciosus (Acarina: Acaridae), and its distribution among related mites. Appl. Ent. Zool. 23: 422–427.

    CAS  Google Scholar 

  • Maraun M, Heethoff M, Schneider K et al. (2004) Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp. Appl. Acarol. 33: 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Michael AD (1884) British Oribatidae. Vol. I. The Ray Society, London.

    Google Scholar 

  • Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp. Appl. Acarol. 22: 559–594.

    Article  Google Scholar 

  • Raspotnig G (2006) Chemical alarm and defence in the oribatid mite Collohmannia gigantea. Exp. Appl. Acarol. 39: 177–194.

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G & Krisper G (1998) Fatty acids as cuticular surface components in oribatid mites (Acari: Oribatida). Arthropod Biology: Contributions to Morphology, Ecology, and Systematics - Biosystematics and Ecology Series No. 14 (ed. by E Ebermann), pp. 215–243. Österreichische Akademie der Wissenschaften, Vienna, Austria.

    Google Scholar 

  • Raspotnig G, Schuster R, Krisper G et al. (2001) Chemistry of the oil gland secretion of Collohmannia gigantea (Acari: Oribatida). Exp. Appl. Acarol. 25: 933–946.

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Schuster R & Krisper G (2003) Functional anatomy of oil glands in Collohmannia gigantea (Acari, Oribatida). Zoomorpholgy 122: 105–112.

    Article  Google Scholar 

  • Raspotnig G, Krisper G & Schuster R (2004) Oil gland chemistry of Trhypochthonius tectorum (Acari: Oribatida) with reference to the phylogenetic significance of secretion profiles in the Trhypochthoniidae. Intern. J. Acarol. 30: 369–374.

    Article  Google Scholar 

  • Raspotnig G, Krisper G & Schuster R (2005a) Ontogenetic changes in the chemistry and morphology of oil glands in Hermannia convexa (Acari: Oribatida). Exp. Appl. Acarol. 35: 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Krisper G, Schuster R et al. (2005b) Volatile exudates from the oribatid mite, Platynothrus peltifer. J. Chem. Ecol. 31: 419–430.

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Kaiser R, Stabentheiner E & Leis H-J (2008) Chrysomelidial in the opisthonotal glands of the oribatid mite, Oribotritia berlesei. J. Chem. Ecol. 34: 1081–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspotnig G, Stabentheiner E, Föttinger P et al. (2009) Opisthonotal glands in the Camisiidae (Acari, Oribatida): evidence for a regressive evolutionary trend. J. Zool. Syst. Evol. Res., published online 25 Sep 2008, doi: 10.1111/j.1439–0469.2008.00486.x

    Google Scholar 

  • Riha G (1951) Zur Ökologie der Oribatiden in Kalksteinböden. Zool. Jb. Syst. Abt. 80: 407–450.

    Google Scholar 

  • Sakata T & Norton RA (2001) Opisthonotal gland chemistry of earlyderivative oribatid mites (Acari) and its relevance to systematic relationships of Astigmata. Intern. J. Acarol. 27: 281–292.

    Article  Google Scholar 

  • Sakata T & Norton RA (2003) Opisthonotal gland chemistry of a middle- derivative oribatid mite, Archegozetes longisetosus (Acari: Trhypochthoniidae). Intern. J. Acarol. 29: 345–350.

    Article  Google Scholar 

  • Sakata T, Tagami K & Kuwahara Y (1995) Chemical ecology of oribatid mites. I. Oil gland components of Hydronothrus crispus Aoki. J. Acarol. Soc. Jpn. 4: 69–75.

    Article  Google Scholar 

  • Sakata T, Shimano S & Kuwahara Y (2003) Chemical ecology of oribatid mites. III. Chemical composition of oil gland exudates from two oribatid mites, Trhypochthoniellus sp. and Trhypochthonius japonicus (Acari: Trhypochthoniidae). Exp. Appl. Acarol. 29: 279–291.

    Article  CAS  PubMed  Google Scholar 

  • Saporito R, Donelly MA, Norton RA et al. (2007) Oribatid mites as a major dietary source for alkaloids in poison frags. Proc. Natl. Acad. Sci. USA 104: 8885–8890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Kuwahara Y, Matsuyama S et al. (1993) Male and female sex pheromones produced by Acarus immobilis Griffiths (Acaridae, Acarina). Chemical ecology on astigmatid mites. XXXIV. Naturwissenschaften 80: 34–36.

    CAS  Google Scholar 

  • Schatz H (2002) The Oribatida literature and the described oribatid species (Acari) (1758–2001) - an analysis. Abh. Ber. Naturkundemus. Görlitz 74: 37-45.

    Google Scholar 

  • Schuster R (1962) Nachweis eines Paarungszeremoniells bei den Oribatiden. Naturwissenschaften 49: 502.

    Article  Google Scholar 

  • Shimano S, Sakata T, Mizutani Y et al. (2002) Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J. Chem. Ecol. 28: 1831–1837.

    Article  CAS  PubMed  Google Scholar 

  • Smrz J (1992) Some adaptive features in the microanatomy of mossdwelling oribatid mites (Acari: Oribatida) with respect to their ontogenetical development. Pedobiologia 36: 306–320.

    Google Scholar 

  • Takada W, Sakata T, Shimano S et al. (2005) Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J. Chem. Ecol. 31: 2403–2415.

    Article  CAS  PubMed  Google Scholar 

  • Tongu Y, Ishii A & Oh H (1986) Ultrastructure of house-dust mites, Dermatophagoides farinae and D. pteronyssinus. Jap. J. Sanit. Zool. 37: 237–244.

    Google Scholar 

  • Woodring JP (1970) Comparative morphology, homologies and functions of the male system in oribatid mites (Arachnida: Acari). J. Morph. 132: 425–452.

    Article  CAS  PubMed  Google Scholar 

  • Woodring JP & Cook EF (1962) The internal anatomy, reproductive physiology and moulting process of Ceratozetes cisalpinus (Acarina: Oribatei). Ann. Entomol. Soc. Amer. 55: 164–181.

    Article  Google Scholar 

  • Zachvatkin AA (1941) Fauna of USSR. Arachnoidea Vol. VI, No 1. Tyroglyphoidea (Acari). Zoological Institute of the Academy of Science of the USSR, Moscow, Russia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Raspotnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Raspotnig, G. (2010). Oil gland secretions in Oribatida (Acari). In: Sabelis, M., Bruin, J. (eds) Trends in Acarology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9837-5_38

Download citation

Publish with us

Policies and ethics