Skip to main content

From sequence to phoresy – molecular biology in acarology

  • Conference paper
  • First Online:
Trends in Acarology

Abstract

First of all, I would like to thank Maurice Sabelis and the organizing committee of the International Congress for the honor of being invited to present this address. When Maurice invited me to give this address he suggested I stick with the general theme of this congress, ecology and genomics. I had a brief moment of doubt, I do not actually work on either genomics or ecology, and so I decided to broaden the topic to the impact of molecular biology on acarology. More specifically, to use this occasion to emphasize and celebrate some areas where molecular biology has allowed us to make significant advances. Acarology is clearly following in the footsteps of other disciplines in rapidly integrating molecular data and methods in all aspects of research. Anybody doubting this should check the listing of presentations at this congress. In presenting these comments I should stress that in selecting developments to highlight, I have tried to cover a range, but I lay no claim to being comprehensive. These are my choices, reflecting my biases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DL & Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24: 165–189.

    Article  CAS  PubMed  Google Scholar 

  • Athias-Binche F & Morand S (1993) From phoresy to parasitism: an example of mites and nematodes. Res. Rev. Parasitol. 53: 73–79.

    Google Scholar 

  • Bailly X, Migeon A & Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol. J. Linn. Soc. 82: 69–78.

    Article  Google Scholar 

  • Black IV WC & Roehrdanz RL (1999) Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol. Biol. Evol. 15: 1772–1785.

    Article  Google Scholar 

  • Bochkov, AV, OConnor, BM & Wauthy, G (2008) Phylogenetic position of the mite family Myobiidae within the infraorder Eleutherengona (Acariformes) and origins of parasitism in eleutherengone mites. Zool. Anz. 247: 15–45.

    Article  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breeuwer JAJ & Jacobs G (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 20: 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Campbell NJH & Barker SC (1998) An unprecedented major rearrangement in an arthropod mitochondrial genome. Mol. Biol. Evol. 15: 1786–1787.

    Article  CAS  PubMed  Google Scholar 

  • Carew ME, Goodisman MAD & Hoffmann AA (2004) Species status and population genetic structure of grapevine eriophyoid mites. Entomol. Exp. Appl. 111: 87–96.

    Article  Google Scholar 

  • Childers CC, Rodrigues JCV, Derrick KS et al., (2003) Citrus leprosies and its status in Florida and Texas: Past and present. Exp. Appl. Acarol. 30: 181–202.

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst. Appl. Acarol. 7: 3–14.

    Article  Google Scholar 

  • Cruickshank RH & Thomas RH (1999) Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata). Evolution 53: 1796–1803.

    Article  CAS  Google Scholar 

  • Dabert J, Dabert M & Mironov SV (2001) Phylogeny of feather mite subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) inferred from combined analyses of molecular and morphological data. Mol. Phylogenet. Evol. 20: 124–135.

    Article  CAS  PubMed  Google Scholar 

  • Denegri GM (1993) Review of oribatid mites as intermediate hosts of the Anoplocephalidae. Exp. Appl. Acarol. 17: 567–580.

    Article  Google Scholar 

  • Evans JD & Lopez DL (2002) Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 27: 69–78.

    Article  CAS  PubMed  Google Scholar 

  • van der Geest LPS, Elliot SL, Breeuwer JAJ & Beerling EAM (2000) Diseases of mites. Exp. Appl. Acarol. 24: 497–560.

    Article  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD & Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413: 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC & Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18: 5–70.

    PubMed  Google Scholar 

  • Gotoh T, Noda H & Hong X-Y (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity 91: 208–216.

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Noda H, Fujita T et al. (2005) Wolbachia and nuclearnuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: Tetranychidae). Heredity 94: 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Haumann G (1991) Zur Phylogenie primitiver Oribatiden, Acari: Oribatida. DBV Verlag für die Technische Universität Graz, Graz, Austria.

    Google Scholar 

  • Heethoff M, Maraun M & Scheu S (2002) Ancient parthenogenetic species: Methods for detection and a candidate from oribatid mites. Zoology 105: 25.

    Article  Google Scholar 

  • Hofstetter RW, Cronin JT, Klepzig KD et al. (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147: 679–691.

    Article  PubMed  Google Scholar 

  • Houck MA & Cohen AC (1995) The potential role of phoresy in the evolution of parasitism: Radiolabelling (tritium) evidence from an astigmatid mite. Exp. Appl. Acarol. 19: 677–694.

    Article  Google Scholar 

  • Hoy MA & Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol. Contr. 32: 427–441.

    Article  Google Scholar 

  • Jeyaprakash A & Hoy MA (2004) Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). J. Invert. Pathol. 86: 111–116.

    Article  CAS  Google Scholar 

  • Klimov, PB & OConnor, BM (2008) Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): Evidence from three nuclear genes. Mol. Phylogen. Evol. 47: 1135–1156.

    Article  CAS  Google Scholar 

  • Klompen H (2000) A preliminary assessment of the utility of elongation factor-1α in elucidating relationships among basal Mesostigmata. Exp. Appl. Acarol. 24: 805–820.

    Article  CAS  PubMed  Google Scholar 

  • Klompen H, Lekveishvili MG & Black IV WC (2007) Phylogeny of Parasitiform mites (Acari) based on rDNA. Mol. Phylogen. Evol. 43: 936–951.

    Article  CAS  Google Scholar 

  • Klompen JSH, Black IV WC, Keirans JE & Norris DE (2000) Systematics and biogeography of hard ticks, a total evidence approach. Cladistics 16: 79–102.

    Article  Google Scholar 

  • Krantz GW & Walter DE (eds) (2009) A Manual of Acarology. Texas Tech University Press, Lubbock, TX, USA.

    Google Scholar 

  • Lekveishvili M & Klompen H (2004) Phylogeny of infraorder Sejina (Acari, Mesostigmata). Zootaxa 629: 1–19.

    Google Scholar 

  • Lindquist EE (1984) Current theories on the evolution of major groups of Acari and on their relationship with other groups of Arachnida, with consequent implications for their classification. Acarology VI, Vol. 1 (ed. by DA Griffiths & CE Bowman), pp. 28–62. Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family group taxa in the Heterostigmata. Mem. Entomol. Soc. Can. 136: 1–517.

    Article  Google Scholar 

  • Maraun M, Heethoff M, Schneider K et al. (2004) Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Exp. Appl. Acarol. 33: 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Martens K, Rossetti G & Horne DJ (2003) How ancient are ancient asexuals? Proc. R. Soc. Lond. B 270: 723–729.

    Article  Google Scholar 

  • McCoy KD, Tirard C & Michalakis Y (2003) Spatial genetic structure of the ectoparasite Ixodes uriae within breeding cliffs of its colonial seabird host. Heredity 91: 422–429.

    Article  CAS  PubMed  Google Scholar 

  • McCoy KD, Chapuis E, Tirard C et al. (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc. R. Soc. Lond. B 272: 2389–2395.

    Article  Google Scholar 

  • Murrell A, Dobson SJ, Walter DE et al. (2005) Relationships among the three major lineages of the Acari (Arthropoda : Arachnida) inferred from small subunit rRNA: paraphyly of the parasitiformes with respect to the opilioacariformes and relative rates of nucleotide substitution. Invert. Syst. 19: 383–389.

    Article  CAS  Google Scholar 

  • Navajas M, Le Conte Y, Solignac M et al. (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol. Biol. Evol. 19: 2313–2317.

    Article  CAS  PubMed  Google Scholar 

  • Navia D, De Moraes GJ, Roderick G & Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari : Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull. Entomol. Res. 95: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. Mites: Ecological and Evolutionary Analyses of Life-History Patterns (ed. by MA Houck), pp. 99–135. Chapman & Hall, New York, NY, USA.

    Chapter  Google Scholar 

  • Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp. Appl. Acarol. 22: 559–594.

    Article  Google Scholar 

  • Norton RA & Palmer SC (1991) The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. The Acari. Reproduction, Development and Life History Strategies. (ed. by PW Murphy & R Schuster), pp. 107–136. Chapman and Hall, London, UK.

    Google Scholar 

  • OConnor BM (1984) Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. Acarology VI, Vol. 1 (ed. by DA Griffiths & CE Bowman), pp. 19–27. Ellis Horwood, Chichester, UK.

    Google Scholar 

  • Palmer SC & Norton RA (1991) Taxonomic, geographic and seasonal distribution of thelytokous parthenogenesis in the Desmonomata (Acari: Oribatida). Exp. Appl. Acarol. 12: 67–81.

    Article  Google Scholar 

  • Pegler KR, Evans L, Stevens JR & Wall R (2005) Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Med. Vet. Entomol. 19: 392–403.

    Article  CAS  PubMed  Google Scholar 

  • Proctor HC & Garga N (2004) Red, distasteful water mites: Did fish make them that way? Exp. Appl. Acarol. 34: 127–147.

    Article  PubMed  Google Scholar 

  • Ramey RR, Kelley ST, Boyce WM & Farrell BD (2000) Phylogeny and host specificity of psoroptic mange mites (Acarina: Psoroptidae) as indicated by ITS sequence data. J. Med. Entomol. 37: 791–796.

    Article  CAS  PubMed  Google Scholar 

  • Reeves WK, Dowling APG & Dasch GA (2006) Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exp. Appl. Acarol. 38: 181–188.

    Article  PubMed  Google Scholar 

  • Samish M & Rehácek J (1999) Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 44: 519–182.

    Article  Google Scholar 

  • Samish M, Alekseev E & Glazer I (2000) Mortality rate of adult ticks due to infection by entomopathogenic nematodes. J. Parasitol. 86: 679–684.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer I, Domes K, Heethoff M (2006) No evidence for the (Meselson effect( in parthenogenetic oribatid mites (Oribatida, Acari). J. Evol. Biol. 19: 184–193.

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Mitani H, Barker SC et al. (2005a) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J. Mol. Evol. 60: 764–773.

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Barker SC, Mitani H et al. (2005b) Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes. Mol. Biol. Evol. 22: 620–629.

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Aoki Y, Mitani H et al. (2004) The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years. Insect Mol. Biol. 13: 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool. J. Linn. Soc. 150: 221–265.

    Article  Google Scholar 

  • Skoracki M, Michalik J, Skotarczak B, et al. (2006) First detection of Anaplasma phagocytophilum in quill mites (Acari : Syringophilidae) parasitizing passerine birds. Microbes Infection 8: 303–307.

    Article  CAS  PubMed  Google Scholar 

  • Solignac M, Vautrin D, Pizzo A et al. (2003) Characterization of microsatellite markers for the apicultural pest Varroa destructor (Acari: Varroidae) and its relatives. Mol. Ecol. News 3: 556–559.

    Article  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Rousset F & Pasteur N (1999) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. Exp. Appl. Acarol. 23: 365–378.

    Article  Google Scholar 

  • Vala F, Breeuwer JAJ & Sabelis MW (2000) Wolbachia-induced (hybrid breakdown( in the two-spotted spider mite Tetranychus urticae Koch. Proc. Roy. Soc. Lond. B 267: 1931–1937.

    Article  CAS  Google Scholar 

  • Vala F, Weeks A, Claessen D et al. (2002) Within- and between-population variation in Wolbachia-induced reproductive incompatibility. Evolution 56: 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  • Vala F, van Opijnen T, Breeuwer JAJ & Sabelis MW (2003) Genetic conflicts over sex ratio: mite-endosymbiont interactions. Am. Nat. 161: 254–266.

    Article  PubMed  Google Scholar 

  • Valenzuela JG (2004) Exploring tick saliva: from biochemistry to ( sialomes ( and functional genomics. Parasitol. 129: S83-S94.

    Article  CAS  Google Scholar 

  • Walton SF, Dougall A, Pizzutto S et al. (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int. J. Parasitol. 34: 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Weeks AR, Marec F & Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292: 2479–2482.

    Article  CAS  PubMed  Google Scholar 

  • Welch DM & Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.

    Article  CAS  Google Scholar 

  • Whiteman NK, Kimball RT & Parker PG (2007). Co-phylogeography and comparative population genetics of the threatened Galapagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol. Ecol. 16: 4759–4773.

    Article  CAS  PubMed  Google Scholar 

  • Whiteman NK, Sanchez P, Merkel J et al. (2006) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J. Parasitol. 92: 1218–1228

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fang QQ, Keirans JE & Durden LA (2003) Cloning and sequencing of putative acetylcholinesterase cDNAs from the American dog tick, Dermacentor variabilis, and the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). J. Med. Entomol. 40: 890–896.

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fang QQ, Keirans JE & Durden LA (2004) Ferritin gene coding sequences are conserved among eight hard tick species (Ixodida: Ixodidae). Ann. Entomol. Soc. Am. 97: 567–573.

    Article  CAS  Google Scholar 

  • Zahler M, Hendrikx WML, Essig A et al. (2000) Species of the genus Psoroptes (Acari: Psoroptidae): A taxonomic consideration. Exp. Appl. Acarol. 24: 213–225.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Klompen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Klompen, H. (2010). From sequence to phoresy – molecular biology in acarology. In: Sabelis, M., Bruin, J. (eds) Trends in Acarology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9837-5_1

Download citation

Publish with us

Policies and ethics