Effects of Climate Change on the Vulnerability of Norway Spruce Stands – Soil Hydrological Constraints for Forest Management in Austria’s Lowlands

  • Karl GartnerEmail author
  • Michael Englisch
  • Ernst Leitgeb
Part of the Ecological Studies book series (ECOLSTUD, volume 212)


The management of manmade spruce forests under the aspect of climate change is an important issue in Central Europe. The results of climate scenarios indicate that the growth conditions in low elevations will deteriorate significantly. For Austria’s lowlands the vulnerability is analyzed and regional maps of different risk classes for spruce dominated forests are presented. Local site conditions, however, play a crucial role. In two case studies, where Norway spruce is growing on heavy soils, the influence of soil properties and tree mixture on the water demand of Norway spruce, especially during drought stress periods, is illustrated. On heavy, clayey soils restricted root formation and consequently the inability to exhaust water reserves in deeper parts of the soil is an important factor for drought stress. In mixed spruce/beech stands there is some evidence that the belowground competition leads to a very shallow rooting of spruce with negative consequences in drought stress periods. Thinning strategies and the reduction of the rotation period are tools to improve the growth conditions for spruce. On very unfavourable sites a stand conversion seems to be unavoidable. After large scale disturbances, like wind throw, natural regeneration of pioneer tree species can help to overcome the critical early regeneration phase.


Drought Stress Fine Root Soil Water Content Bark Beetle Mixed Stand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auer I, Böhm R, Schöner W (2001) ALOCLIM-Austrian long-term climate 1767-2000. – Multiple instrumental climate series from Central Europe. Österr Beitr Meteorol Geophys 25:1–147Google Scholar
  2. Bolte A, Ibisch P, Menzel A, Rothe A (2008) Was Klimahüllen uns verschweigen. AFZ/Wald 63:800–803Google Scholar
  3. Burk D (2006) Physiologische, anatomische und chemische Aspekte der Regulation der Wasseraufnahme bei Rotbuche, Kiefer und Birke auf unterschiedlich wasserversorgten Standorten. Dissertation (in German with English abstract), Georg-August University, Göttingen, 123 ppGoogle Scholar
  4. Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with two thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546CrossRefGoogle Scholar
  5. Ciais Ph, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533PubMedCrossRefGoogle Scholar
  6. Ciencala E, Kucera J, Lindroth A, Čermák J, Grelle A, Halldin S (1997) Canopy transpiration from boreal forest in Sweden during a dry year. Agric For Meteorol 86:157–167CrossRefGoogle Scholar
  7. Dobbertin M (2005) Tree growth as indicator of tree vitality and tree reaction to environmental stress: a review. Eur J For Res 124:319–333CrossRefGoogle Scholar
  8. Dubrovsky M, Nemesova I, Kalvova J (2005) Uncertainties in climate change scenarios for the Czech Republic. Clim Res 29:139–156CrossRefGoogle Scholar
  9. Eybl J, Godina R, Lalk P, Lorenz P, Müller G, Weilguni V (2005) Das Trockenjahr 2003 in Österreich (in German with English abstract). Mitt Hydrogr Dienst Österr 83:1–38Google Scholar
  10. FAO (2006) World reference base for soil resources 2006 – A framework for international classification, correlation and communication. Intern. World Soil Resources Reports 103, FAO, Rome, 132 ppGoogle Scholar
  11. Gartner K (1997) Wasserhaushalt ausgewählter Standorte im Osten Österreichs (in German with English abstract). In: Müller F (ed.) Silviculture on the lower limit of closed forests. BFW-Berichte 95, pp 31–43Google Scholar
  12. Gartner K, Leitgeb E, Nadezhdina N, Englisch M, Čermak J (2009) Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For Ecol Manag 258:590–599CrossRefGoogle Scholar
  13. Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Pfeiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year 2003. Agric For Meteorol 143:123–145CrossRefGoogle Scholar
  14. Harlfinger O (1999) Klimahandbuch der Österreichischen Bodenschätzung. Band 1. Universitäts- verlag Wagner, Innsbruck, 196 ppGoogle Scholar
  15. Hlasny T, Balaz P (2008) Climatic water balance of Slovakia using FAO Penman-Monteith evapotranspiration. Geogr Cas 60:15–30Google Scholar
  16. IPCC (2007) Intergovernmental panel on climate change: climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1009 ppGoogle Scholar
  17. Jost G, Schume H, Hager H (2004) Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.)-Norway spruce [Picea abies (L.) Karst.] stand. Eur J For Res 123:93–104Google Scholar
  18. Kazda M, Englisch M (2005) Definition of the conversion process priority. In: Oleskog G, Löf M (eds.) The ecological and silvicultural bases for underplanting beech (Fagus sylvatica L.) below Norway spruce shelterwood (Picea abies L. Karst.). Schr Forstl Fak Univ Gött Niedersächs Forstl Vers Anst 139:13–19Google Scholar
  19. Klimo E (2007) Main ecological problems of Czech forestry in former times and at present. Rad Šumar Inst Izvanr Broj 10:117–126Google Scholar
  20. Klimo E, Kulhavy J (2006) Norway spruce monocultures and their transformation to close-to-nature forests from the point of view of soil changes in the Czech Republic. Ekologia 25:27–43Google Scholar
  21. Kölling C (2007) Klimahüllen für 27 Waldbaumarten. AFZ/Wald 62:1242–1245Google Scholar
  22. Kölling C, Zimmermann L (2007) Die Anfälligkeit der Wälder Deutschlands gegenüber dem Klimawandel. Gefahrst Reinhalt Luft 67:259–268Google Scholar
  23. Kölling C, Zimmermann L, Borchert H (2009) Von der “kleinen Eiszeit“ zur „Großen Heißzeit“. Vergangenheit, Gegenwart und Zukunft des Fichtenanbaus in Deutschland. LWF aktuell 69:58–61Google Scholar
  24. Lagergren F, Lindroth A (2002) Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric For Meteorol 112:67–85CrossRefGoogle Scholar
  25. Laurent M, Antoine N, Joël G (2003) Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For Ecol Manag 183:47–60CrossRefGoogle Scholar
  26. Lexer MJ, Hönninger K, Scheifinger H, Matulla Ch, Groll N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M (2002) The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. For Ecol Manag 162:53–72CrossRefGoogle Scholar
  27. Lexer MJ, Seidl R, Rammer W, Formayer H (2007) Niederösterreichs Wald im Klimawandel. Klimafolgenstudie für die Region Waldviertel. In: Amt der NÖ Landesregierung Abt. Umweltwirtschaft, Raumordnungsförderung (eds) Auswirkungen des Klimawandels in Niederösterreich (in German). St. Pölten, Austria, 356 ppGoogle Scholar
  28. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  29. Loibl W, Züger J, Köstl M (2009) Reclip:More Kleinräumige Klimaszenarien für Österreich. Standort 33:94–100CrossRefGoogle Scholar
  30. Matulla C, Groll N, Kromp-Kolb H, Scheifinger H, Lexer MJ, Widmann M (2002) Climate change scenarios at Austrian National Forest Inventory sites. Clim Res 22:161–173CrossRefGoogle Scholar
  31. Mayer H (1980) Waldbau, 2nd edn. Gustav Fischer Verlag, Stuttgart, New York, 483 ppGoogle Scholar
  32. Mayer H (1984) Waldbau auf soziologisch-ökologischer Grundlage, 3rd edn. Gustav Fischer Verlag, Stuttgart, New York, 513 ppGoogle Scholar
  33. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  34. Nadezhdina N, Čermák J, Nadezhdin V (1998) Heat field deformation method for sap flow measurements. In: Čermák J, Nadezhdina N (eds) Proceedings of the 4th international workshop on measuring sap flow in intact plants. IUFRO Publications, Publishing House of Mendel University, Brno, Czech Republic, pp 72–92Google Scholar
  35. Niedermair M, Lexer MJ, Plattner G, Formayer H, Seidl, R (2007) Klimawandel und Artenvielfalt – Wie klimafit sind Österreichs Wälder, Flüsse und Alpenlandschaften? Österreichische Bundesforste AG, 27 ppGoogle Scholar
  36. Oleskog G, Löf M (2005) The ecological and silvicultural bases for underplanting beech (Fagus sylvatica L.) below Norway spruce shelterwood (Picea abies L. Karst.). Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsichen Forstlichen Versuchsanstalt, Band 139. J.D. Saurländer’s Verlag, Frankfurt am Main, 94 ppGoogle Scholar
  37. Oltchev A, Čermak J, Nadezhdina N, Tatarinov F, Tishenko A, Ibrom A, Gravenhorst G (2002) Transpiratiion of a mixed forest stand: field measurements and simulation using SVAT models. Boreal Environ Res 7:389–397Google Scholar
  38. Persson H, Von Fircks Y, Majdi H, Nilsson LO (1995) Root distribution in a Norway spruce (Picea abies (L. Karst.) stand subjected to drought and ammonium-sulphate application. Plant Soil 168–169:161–165CrossRefGoogle Scholar
  39. Prskawetz M, Schadauer K (2000) Conditions for forest restoration in Austria. Analysis based on forest inventory data. In: Hasenauer H (ed) Forest ecosystem restoration. Proceedings of the international conference held in Vienna, Austria 10–12.4.2000. University of Agricultural Sciences, Vienna, pp 223–228Google Scholar
  40. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577CrossRefGoogle Scholar
  41. Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346CrossRefGoogle Scholar
  42. Schume H, Jost G, Katzensteiner K (2003) Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)-European beech (Fagus sylvatica L.) stand. Geoderma 112:273–287CrossRefGoogle Scholar
  43. Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274CrossRefGoogle Scholar
  44. Schume H, Hager H, Jost G (2005) Water and energy exchange above a mixed European Beech – Norway Spruce forest canopy: a comparison of eddy covariance against soil water depletion measurement. Theor Appl Clim 81:87–100CrossRefGoogle Scholar
  45. Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220CrossRefGoogle Scholar
  46. Seidl R, Schelhaas MJ, Lindner M, Lexer MJ (2009) Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Change 9:101–119CrossRefGoogle Scholar
  47. Smith M (1988) Calculation procedures of modified Penman equation for computers and ­calculators. FAO, Land and Water Development Division, RomeGoogle Scholar
  48. Spiecker H (2000) Growth of Norway Spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. In: Klima E, Hager H, Kulhavy J (eds) Spruce monocultures in Central Europe – problems and prospects. EFI-Proceedings No. 33. European Forest Institute, Joensuu, Finland, pp 11–26Google Scholar
  49. Spiecker H, Hansen J, Klimo, E, Skovsgaard JP, Sterba H, Teufel, Kv (2004) Norway Spruce conversion – options and consequences. EFI Research Report, No. 18, 269 ppGoogle Scholar
  50. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol 13:5–42Google Scholar
  51. Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). J Appl Entomol 122:185–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Forest Ecology and SoilFederal Research and Training Centre for Forests, Natural Hazards and LandscapeViennaAustria

Personalised recommendations