Skip to main content

Above Ground Processes: Anticipating Climate Change Influences

  • Chapter
  • First Online:
Forest Management and the Water Cycle

Part of the book series: Ecological Studies ((ECOLSTUD,volume 212))

Abstract

This chapter reviews the various interactions between tree processes and the environment in the context of observed and expected environmental changes. The chapter begins with the influences of the ubiquitous atmospheric increases in CO2 concentration on leaf photosynthesis and respiration, followed by the expected influences on tree processes. Influences of increasing incidence of drought, increased temperatures and extreme events are then discussed with respect to leaf and tree level processes. Specific attention is given to hydraulic architecture, tree growth and water use efficiency, and species differences in water relations and canopy structure across Europe. The chapter ends with a brief review of canopy-atmosphere interaction and forest influences on climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addington RN, Donovan LA, Mitchell RJ, Vose JM, Pecot SD, Jack SB, Hacke UG, Sperry JS, Oren R (2006) Adjustments in hydraulic architecture of Pinus Palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ 29:535–545

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  PubMed  CAS  Google Scholar 

  • Allen CD, Breshears DD (2007) Climate-induced forest dieback as an emergent global phenomenon. Eos Trans Am Geophys Union 88:504–505

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. FAO Irrig. And Drain, Paper, 56, Rome

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) Drought-induced forest mortality: a global overview reveals emerging climate change risks. For Ecol Manag 259:660–684

    Google Scholar 

  • Arnone JA III, Körner C (1997) Temperature adaptation and acclimation potential of leaf dark respiration in two species of Ranunculus from warm and cold habitats. Arct Alp Res 29:122–125

    Article  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Article  Google Scholar 

  • Baldocchi D, Finnigan JJ, Wilson K, Paw KT, Falge E (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorol 96:257–291

    Article  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol 159:609–621

    Article  CAS  Google Scholar 

  • Betts RA (2007) Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus 59B:602–615

    CAS  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DMH, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar R, Valiente-Banuet A, Ackerly DD (2007) Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytol 176:718–726

    Article  PubMed  Google Scholar 

  • Bigler C, Braker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Blackman VH (1919) The compound interest law and plant growth. Ann Bot 33:353–360

    Google Scholar 

  • Bonal D, Guehl J (2001) Contrasting patterns of leaf water potential and gas exchange responses to drought in seedlings of tropical rainforest species. Funct Ecol 15:490–496

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Bond BJ, Kavanagh KL (1999) Stomatal behaviour of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol 19:503–510

    Article  PubMed  Google Scholar 

  • Borghetti M, Edwards WRN, Grace J, Jarvis PG, Raschi A (1991) The refilling of embolized xylem in Pinus sylvestris L. Plant Cell Environ 14:357–369

    Article  Google Scholar 

  • Bréda N, Granier A, Aussenac A (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306

    Article  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–291

    Article  PubMed  CAS  Google Scholar 

  • Bunce JA (1996) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ 19:131–135

    Google Scholar 

  • Burk D (2006) Physiologische, anatomische und chemische Aspekte der Regulation der Wasseraufnahme bei Rotbuche, Kiefer und Birke auf unterschiedlich wasserversorgten Standorten. Dissertation Georg August Universität Göttingen

    Google Scholar 

  • Canny MJ (1993) The transpiration stream in the leaf apoplast: water and solutes. Philos Trans R Soc London B 341:87–100

    Article  Google Scholar 

  • Centritto M, Lee HSJ, Jarvis PG (1999a) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. I. Growth, whole-plant water use efficiency and water loss. New Phytol 141:129–140

    Article  Google Scholar 

  • Centritto M, Lee HSJ, Jarvis PG (1999b) Increased growth in elevated CO2: an early, short-term response? Global Change Biol 5:623–633

    Article  Google Scholar 

  • Centritto M, Magnani F, Lee HSJ, Jarvis PG (1999c) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytol 141:141–153

    Article  Google Scholar 

  • Centritto M, Lucas ME, Jarvis PG (2002) Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiol 22:699–706

    Article  PubMed  Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

    Article  Google Scholar 

  • Centritto M, Nascetti P, Petrilli L, Raschi A, Loreto F (2004) Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant Cell Environ 27:403–412

    Article  CAS  Google Scholar 

  • Cermák J, Nadezhdina N (1998) Sapwood as the scaling parameter – defining according to xylem water content or radial pattern of sap flow? Ann For Sci 55:509–521

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Cohen S (2009) The role of widespread surface solar radiation trends in climate change: dimming and brightening (pp 21–41). In: Letcher T (ed) Climate change: observed impacts on planet earth. Elsevier, New York, 492 pages

    Google Scholar 

  • Cohen S, Naor A (2002) The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell Environ 25:17–28

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439

    Article  Google Scholar 

  • Coners H (2001) Wasseraufnahme und artspezifische hydraulische Eigenschaften von Buche, Eiche und Fichte. In situ Messungen an Altbäumen. Dissertation Georg August Universität Göttingen

    Google Scholar 

  • Crous KY, Walters MB, Ellsworth DS (2008) Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiol 28:607–614

    Article  PubMed  CAS  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Da Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO, de Freitas HC, Figueira AMES (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32

    Article  Google Scholar 

  • Davey PA, Hunt S, Hymus GJ, DeLucia EH, Drake BG, Karnosky DF, Long SP (2004) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO2], but is increased with long-term growth in the field at elevated [CO2]. Plant Physiol 134:520–527

    Article  PubMed  CAS  Google Scholar 

  • Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002) Shoot dieback during prolonged drought in Ceanothus (Rhamnanceae) Chaparral of California: a possible case of hydraulic failure. Am J Bot 89:820–828

    Article  PubMed  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 499–587

    Google Scholar 

  • Denmead OT, Shaw RH (1962) Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agron J 54:385–390

    Article  Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  • Dixon HH, Joly J (1894) On the ascent of sap. Philos Trans R Soc London Biol Sci 186:563–576

    Article  Google Scholar 

  • Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Graf Pannatier E, Landolt W, Schleppi P, Rigling A (2010) Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol 30:346–360

    Article  PubMed  Google Scholar 

  • Dodd IC (2003) Hormonal interactions and stomatal responses. J Plant Growth Reg 22:32–46

    Article  CAS  Google Scholar 

  • Domec J-C, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R (2009) Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant Cell Environ 32:1500–1512

    Article  PubMed  CAS  Google Scholar 

  • Donatelli M, Carlini L, Bellocchi G (2005) GSRad, Global Solar Radiation estimates. Agricultural Research Council, ISCI, Italy. http://www.apesimulator.it/help/models/solarradiation/

  • Ehleringer J, Bjorkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    Article  PubMed  CAS  Google Scholar 

  • Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Möls T, Kasparova I, Vapaavuori E, Laisk A (2004) Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and CO2- and O3-enriched atmospheres. Plant Cell Environ 27:479–495

    Article  CAS  Google Scholar 

  • Ellsworth DS (1999) CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–472

    Article  Google Scholar 

  • Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P (2006) Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–165

    Article  PubMed  Google Scholar 

  • Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30

    Article  PubMed  Google Scholar 

  • Gall R, Landolt W, Schleppi P, Michellod V, Bucher JB (2002) Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Tree Physiol 22:613–623

    Article  PubMed  Google Scholar 

  • Gartner K, Nadezdhina N, Englisch E, Cermák J, Leitgeb E (2009) Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For Ecol Manag 258:590–599

    Article  Google Scholar 

  • Gifford RM (1995) Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long-term vs short-term distinctions for modeling. Global Change Biol 1:249–263

    Article  Google Scholar 

  • Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Munoz A, Bailey JA, Whitham TG (2006) Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv Biol 20:1477–1486

    Article  PubMed  Google Scholar 

  • Granier A, Loustau D, Bréda N (2000) A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57:755–765

    Article  Google Scholar 

  • Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Pfeiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala T, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year 2003. Agr For Meteorol 143:123–145

    Article  Google Scholar 

  • Guarin A, Taylor AH (2005) Drought triggered mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218:229–244

    Article  Google Scholar 

  • Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ (2002) Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant Cell Environ 25:379–393

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schafer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Hölscher D, Koch O, Korn S, Leuschner Ch (2005) Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal drought. Trees 19:628–637

    Article  Google Scholar 

  • Horton JL, Kolb TE, Hart SC (2001) Physiological response to groundwater depth varies among species and with river flow regulation. Ecol Appl 11:1046–1059

    Article  Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–93

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, USA

    Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Jin M, Liang S (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. J Climatol 19:2867–2881

    Article  Google Scholar 

  • Johnsen KH (1993) Growth and ecophysiological responses of black spruce seedlings to elevated CO2 under varied water and nutrient additions. Can J For Res 23:1133–1142

    Article  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1, 5-bisphosphate carboxylase/oxygenase. Planta 161:308–313

    Article  CAS  Google Scholar 

  • Karl TR, Knight RW, Plummer N (1995) Trends in high-frequency climate variability in the twentieth century. Nature 377:217–220

    Article  CAS  Google Scholar 

  • Katul G, Leuning R, Oren R (2003) Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339–350

    Article  CAS  Google Scholar 

  • Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon A, Wyckoff P (2001) Tree mortality in gap models: application to climate change. Clim Change 51:509–540

    Article  Google Scholar 

  • Körner Ch (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  CAS  Google Scholar 

  • Körner Ch, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Leitgeb E, Gartner K, Nadezdina N, Englisch M, Cermák J (2002) Ecological effects of pioneer species on soil moisture regime in an early successional stage following wind-throw in a spruce stand. Proceedings of the IUFRO Conference on Restoration of Boreal and Temperate Forests, Gardiner ES, Breland LJ [Comp.] Reports/Skov & Landskab (11), pp 193–194

    Google Scholar 

  • Loewenstein NJ, Pallardy SG (1998a) Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of young plants of four temperate deciduous angiosperms. Tree Physiol 18:421–430

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein NJ, Pallardy SG (1998b) Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. Tree Physiol 18:431–440

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Drake BG (1992) Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. In: Baker NR, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 69–103

    Google Scholar 

  • Loreto F, Centritto M (2008) Leaf carbon assimilation in a water-limited world. Plant Biosyst 142:154–161

    Article  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548

    Article  Google Scholar 

  • Maherali H, DeLucia EH (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, DeLucia EH (2001) Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia 129:481–491

    Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Martínez-Vilalta J, Piñol J, Beven K (2002) A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol Model 155:127–147

    Article  Google Scholar 

  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, LaDeau SL, Jackson RB, Finzi AC (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–528

    Article  PubMed  CAS  Google Scholar 

  • McDowell NG, Adams HA, Bailey JD, Hess M, Kolb TE (2006) Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Appl 16:1164–1182

    Article  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P (1997) Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. Plant Cell Environ 20:1242–1252

    Article  Google Scholar 

  • Meinzer FC, Bond BJ, Warren JM, Woodruff DR (2005) Does water transport scale universally with tree size? Funct Ecol 19:558–565

    Article  Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Miao SL, Wayne PM, Bazzaz FA (1992) Elevated CO2 differentially alters the responses of co-occurring birch and maple seedlings to a moisture gradient. Oecologia 90:300–304

    Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86:200–203

    Article  PubMed  CAS  Google Scholar 

  • Nadezhdina N (1999) Sapflow as an indicator of plant water stress. Tree Physiol 19:885–891

    Article  PubMed  Google Scholar 

  • Niinemets U, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  PubMed  CAS  Google Scholar 

  • Norby RJ, Gunderson CA, Edwards NT, Wullschleger SD, O’Neill EG (1995) TACIT: temperature and CO2 interactions in trees. Photosynthesis and growth. Ecol Soc Am Bull 76(Suppl):197

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  PubMed  CAS  Google Scholar 

  • Oren R, Pataki D (2001) Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549–559

    Article  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39:245–265

    Article  Google Scholar 

  • Pataki DE, Oren R (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26:1267–1278

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  PubMed  CAS  Google Scholar 

  • Pickard WF (1981) The ascent of sap in plants. Prog Biophys Mol Biol 37:181–229

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924

    Article  PubMed  CAS  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Pockman WT, Sperry JS, O’Leary JW (1995) Sustained and significant negative water pressure in xylem. Nature 378:715–716

    Article  CAS  Google Scholar 

  • Ramanathan V (2008) Why is the earth’s albedo 29% and was it always 29%? iLEAPS Newsl 5:18–20

    Google Scholar 

  • Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761

    Article  Google Scholar 

  • Roderick ML, Berry SL (2001) Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149:473–485

    Article  Google Scholar 

  • Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM, Jones CS (2008) Hydraulic integration and shrub growth form linked across continental aridity gradients. Proc Natl Acad Sci USA 105:11248–11253

    Article  PubMed  CAS  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for worlds ecosystems. Proc Nat Acad Sci USA 103:13116–13120

    Article  PubMed  CAS  Google Scholar 

  • Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen J, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD (2010) Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biol 16:657–670

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections on an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biol 15:356–367

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Article  PubMed  CAS  Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the earth’s climate. Science 215:1498–1501

    Article  PubMed  CAS  Google Scholar 

  • Singsaas EL, Ort D, DeLucia E (2003) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ 27:41–50

    Article  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104:13–23

    Article  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  • Springer CJ, DeLucia EH, Thomas RB (2005) Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide. Tree Physiol 25:385–394

    Article  PubMed  CAS  Google Scholar 

  • Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Ann Rev Ecol Syst 22:309–334

    Article  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Střelcová K, Mátyás Cs, Kleidon A, Lapin M, Matejka F, Blaženec M, Škvarenina J, Holécy J (2009) Bioclimatology and natural hazards. Springer, Berlin

    Book  Google Scholar 

  • Strugnell NC, Lucht W, Schaaf C (2001) A global albedo data set derived from AVHRR data for use in climate simulations. Geophys Res Lett 28:191–194

    Article  Google Scholar 

  • Swetnam TW, Betancourt JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J Climate 11:3128–3147

    Article  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Google Scholar 

  • Tatarinov F, Cermák J (1999) Daily and seasonal variation of stem radius in oak. Ann For Sci 56:579–590

    Article  Google Scholar 

  • Teskey RO (1997) Combined effects of elevated CO2 and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell Environ 3:373–380

    Article  Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathol 32:277–307

    Article  Google Scholar 

  • Thomas JF, Harvey CN (1983) Leaf anatomy of four species grown under continuous CO2 enrichment. Bot Gazette 144:303–309

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Miglietta F, Raschi A (1998) Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide sprint. Plant Cell Environ 21:613–622

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Miglietta F, Raschi A (1999) Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiol 19:261–270

    Article  PubMed  Google Scholar 

  • Tognetti R, Minnocci A, Penuelas J, Raschi A, Jones MB (2000a) Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO2 vent. J Exp Bot 51:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Tognetti R, Raschi A, Jones MB (2000b) Seasonal patterns of tissue water relations in three Mediterranean shrubs co-occurring at a natural CO2 spring. Plant Cell Environ 23:1341–1351

    Article  Google Scholar 

  • Tschaplinski TJ, Norby RJ, Wullschleger SD (1993) Responses of loblolly pine seedlings to elevated CO2 and fluctuating water supply. Tree Physiol 13:283–296

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993) Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant Cell Environ 16:879–882

    Article  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution – is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Google Scholar 

  • van der Werf GW, Sass-Klaassen U, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Van Mantgem P, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S, Quick PW (2000) Rubisco, physiology in vivo. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, pp 85–113

    Google Scholar 

  • Wagner KR, Ewers FW, Davis SD (1998) Tradeoffs between hydraulic efficiency and mechanical strength in the stems of co-occurring species of chaparral shrubs. Oecologia 117:53–62

    Article  Google Scholar 

  • Wang K-Y, Kellomäki S, Li C, Zha T (2003) Light and water-use efficiencies of pine shoots to elevated carbon dioxide and temperature. Ann Bot 92:1–12

    Article  CAS  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    Article  PubMed  CAS  Google Scholar 

  • Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644

    Article  PubMed  Google Scholar 

  • Whitehead D, Jarvis PG (1981) Coniferous forest and plantations. In: Kozlowski TT (ed) Water deficits and growth, vol 6. Academic Press, New York, pp 49–152

    Google Scholar 

  • Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692–700

    Article  Google Scholar 

  • Wielicki BA, Wong T, Loeb N, Minnis P, Priestley K, Kandel R (2005) Changes in earth’s albedo measured by satellite. Science 308:825

    Article  PubMed  CAS  Google Scholar 

  • Wilson JB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100:1–18

    Article  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 – implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

  • Yoder B, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15:50–57

    Article  Google Scholar 

  • Zweifel R, Zeugin F, Zimmermann L, Newbery DM (2006) Intra-annual radial growth and water relations of trees – implications towards a growth mechanism. J Exp Bot 57:1445–1459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauro Centritto , Roberto Tognetti , Ernst Leitgeb , Katarina Střelcová or Shabtai Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Centritto, M., Tognetti, R., Leitgeb, E., Střelcová, K., Cohen, S. (2010). Above Ground Processes: Anticipating Climate Change Influences. In: Bredemeier, M., Cohen, S., Godbold, D., Lode, E., Pichler, V., Schleppi, P. (eds) Forest Management and the Water Cycle. Ecological Studies, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9834-4_3

Download citation

Publish with us

Policies and ethics