Model-Based Assessment of Forest Land Management on Water Dynamics at Various Hydrological Scales – A Case Study

  • Andreas WahrenEmail author
  • Karl-Heinz Feger
Part of the Ecological Studies book series (ECOLSTUD, volume 212)


This case study follows a straight forward approach to assess forest impact on water dynamics at different scales. Investigation in the catchment of the upper Mulde River (Saxony/Germany) explored firstly to the impact of afforestation measures on the soil hydraulic properties. ‘False chronosequences’ were used to quantify the time-dependent dynamical character of such changes. The findings of these experimental studies were implemented in an existing spatially distributed water budget and rainfall-runoff model (AKWA-M®) and scaled-up for the 129 km² large catchment of the Schwarze Pockau River (Mulde River). The aim was to describe potentials and limitations of forest impact on water balance and floods at the mesoscale. After that a small catchment (6.8 km²) in the study area was analyzed to describe a socio-economically founded development of the land-use (historical background, site properties, subsidy policy etc.). The objectives were (1) to describe scenarios that reflect a close-to-reality future with different boundary conditions which could be guided by political authorities; (2) to consider climate change especially assessing the site conditions before a flood originating rainfall event.


Flood Protection Flood Risk Management Soil Hydraulic Property Potential Natural Vegetation Heavy Rain Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research was supported within the framework of the projects “Analysis, Assessment, and Implementation of Measures for Preventive Flood Protection in the Jeseniky Mountains/Czech Republic” (financed by the German Foundation for the Environment, DBU) and “FLOODsite – Integrated Flood Risk Analysis and Management Methodologies” (Integrated Project 6th EU-FP).


  1. Barthels H, Malitz G, Asmus S, Albrecht FM, Dietzer B, Günther T, Ertel H (1997) Starkniederschlagshöhen für Deutschland – Kostra. Deutscher Wetterdienst, Offenbach am Main, GermanyGoogle Scholar
  2. Dane JH, Topp GC (eds) (2002) Methods of soil analysis: Part 1, Physical methods, 3rd edn. Soil Science Society of America, Madison, WIGoogle Scholar
  3. Enke W, Kreienkamp F, Spekat A (2006) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarien mit dem Regionalisierungsmodell WETTREG 2005 auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI – OM T63L31 2010 bis 2100 für die SRES – Szenarien B1, A1B und A2. Projektbericht im Rahmen des F+E-Vorhabens 204 41 138 “Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland”, 94 SGoogle Scholar
  4. Evans E, Ashley R, Hall J, Penning-Rowsell E, Saul A, Sayers P, Thorne C, Watkinson A (2004) Foresight. Future flooding. Scientific summary: Volume I Future risks and their drivers. Office of Science and Technology, London, UKGoogle Scholar
  5. Golf W, Luckner K (1991) AKWA – ein Modell zur Berechnung aktueller Wasserhaushaltsbilanzen kleiner Einzugsgebiete im Erzgebirge. Acta Hydrophys 32:5–20Google Scholar
  6. LfUG (2006): Sächsisches Landesamt für Umwelt und Geologie – ColorInfraRed (CIR) – biotop type and Land-use mapping (in German). LfUG Abteilung 4 (Natur, Landschaft, Boden). Time reference: 1992/1993Google Scholar
  7. Münch A (1994) Wasserhaushaltsberechnungen für Mittelgebirgseinzugsgebiete unter Berücksichtigung einer sich ändernden Landnutzung. Ph.D. thesis, TU Dresden, Fakultät für Forst-, Geo- u. HydrowissenschaftenGoogle Scholar
  8. Münch A (2004) AKWA-M® – Teilflächen basiertes Wasserhaushalts- und Hochwassermodell. Dr. Dittrich & Partner Hydro-Consult GmbH, Bannewitz, GermanyGoogle Scholar
  9. Schmidt PA, Hempel W, Denner M, Döring N, Gnüchtel A, Walter B, Wendel D (2002) Potentielle Natürliche Vegetation Sachsens mit Karte 1:200 000. In: Materialien zu Naturschutz und Landespflege 2002. Sächsisches Landesamt für Umwelt und Geologie (Hrsg.), DresdenGoogle Scholar
  10. Schwärzel K, Punzel J (2007) Hood infiltrometer – a new type of tension infiltrometer. Soil Sci Am J 71:1438–1447CrossRefGoogle Scholar
  11. Wahren A, Schwärzel K, Feger KH, Münch A (2009) Land-use effects on flood generation – considering soil hydraulic measurements in modeling. Adv Geosci 21:99–107CrossRefGoogle Scholar
  12. Wendroth O, Ehlers W, Hopmans JW, Kage H, Halbertsma J, Wösten JHM (1993) Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci Soc Am J 57:1436–1443CrossRefGoogle Scholar
  13. Wind GP (1968) Capillary conductivity data estimated by a simple method. In: Rijtema PE, Wassink H (eds) Proceedings of the UMESCO/IASH symposium. Water in the unsaturated zone, June 1966, vol 1., pp 181–191Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Soil Science and Site Ecology, Dresden Water CentreTechnische Universität DresdenTharandtGermany
  2. 2.Dr. Dittrich & Partner Hydro-Consult GmbHBannewitzGermany

Personalised recommendations