Advertisement

Forest Management and the Water Cycle: An Integrated Introduction to Scaling

  • Elve LodeEmail author
  • Matthias Langensiepen
  • Jüri Roosaare
  • Gebhard Schueler
  • Harri Koivusalo
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 212)

Abstract

Scaling is a multifaceted methodology which can be applied in a great variety of forest hydrological and management contexts. The purpose of this introduction is to provide an overview of Part III of this book which addresses various scaling applications in forest management and hydrology. It provides an integrated overview of commonly applied scaling procedures in computer cartography and establishes links between modelling, geographic mapping and remote sensing. The following chapters provide deeper insights into the theoretical and practical concepts of scaling using information from numerous forest studies which have been performed across Europe.

Keywords

Geographic Information System Fluvial System Airborne Laser Scanning Spatial Decision Support System Spectral Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work was prepared in the frame of COST Action FP0601 “Forman” project in collaboration of University of Tartu (Department of Geography), Estonia, the Swedish University of Agricultural Sciences (Soil and Environment Department), Institute of Ecology of Tallinn University, Estonia, and the Plant Production Systems Group of Wageningen University, The Netherlands. Used financial sources were the Estonian basic research foundation of SF0280009s07 project of “Impact of disturbances on wetland ecosystems in Estonia” and SF0180127s08 “Material cycling of landscapes in changing climate and land use conditions and ecotechnological control thereof” integrated with FP0601.

References

  1. Anon (2008) Hydrological effects of a changing forest landscape. In: Committee on Hydraulic Impacts of Forest Management, Water Science and Technology Board, Division on Earth and Life Studies, National Research Council of the National Academies. The National Academies Press, Washington, DC, www.nap.edu 2009-06-10Google Scholar
  2. Atkinson PM, Tate NJ (2000) Spatial scale problems and geostatistical solutions: a review. Prof Geographer 5(4):607–623CrossRefGoogle Scholar
  3. Bak P (1996) How nature works: the science of self-organized criticality. Springer, New York, 212 ppGoogle Scholar
  4. Becker A, Braun P (1999) Disaggregation, aggregation and spatial scaling in hydrological modelling. J Hydrol 217:239–252CrossRefGoogle Scholar
  5. Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific Publishing Company, Singapore, 228 ppCrossRefGoogle Scholar
  6. Bithell M, Brasington J (2009) Coupling agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution. Environ Modell Softw 24(2):173–190CrossRefGoogle Scholar
  7. Blaschke T, Lang S, Hay GJ (eds) (2008) Object-based image analysis. Spatial concepts of knowledge-driven remote sensing applications. Springer, Berlin, Heidelberg. NY, 817pp+CDGoogle Scholar
  8. Blöschl G (2001) Scaling in hydrology. Hydrol Process 15:709–711CrossRefGoogle Scholar
  9. Bosch JM, Hewlett JD (1982) Reference review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23CrossRefGoogle Scholar
  10. Buttenfield BP, McMaster RB (1991) Map generalization: making rules for knowledge representation. Longman, London, 245 ppGoogle Scholar
  11. Calder I (2005) Blue revolution: Integrated land and water resources management, 2nd edn. Bath Press, London, 353 ppGoogle Scholar
  12. Casper M (2004) Zur Problematik der Prozessabbildung in kleinen Einzugsgebieten: Prozessstudien und Modellvergleich. http://ubt.opus.hbz-nrw.de/volltexte/2004/284
  13. Chen JM (1996) Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens 22:229–242Google Scholar
  14. Costanza R, Voinov A (eds) (2004) Landscape simulation modeling: a spatially explicit, dynamic approach. – Series: Modeling dynamic systems, XIII. Springer, New York, 330 ppGoogle Scholar
  15. CUAHSI (2007) Hydrology of a Dynamic Earth. A decadal research plan for hydrologic. Consortium of Univ-ties for the Advancement of Hydrologic Science, Inc., Draft version 7.0. April 2, 2007, Released for community review and commentGoogle Scholar
  16. Fedra K (1994) GIS and environmental modeling. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental modeling with GIS. Oxford University Press, New York, pp 35–50Google Scholar
  17. FORSYS (2008) COST Action FP0804 – Forest Management Decision Support Systems. http://fp0804.emu.ee/?id=stsm
  18. de Fraipont P, Tholey N (2007) Map anthropic and climate changes within the Alsatian Forests. In: Schüler G, Gellweiler I, Seeling S (eds) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitteilungen aus der Forchungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr 64/07. Zentralstelle der Forstverwaltung, Trippstadt, pp 267–275Google Scholar
  19. Franklin SE, Dickson EE, Farr DR, Hansen MJ, Moskal LM (Nov/Dec 2000) Quantification of landscape change from satellite remote sensing. Forestry Chronicle 76(6):877–886Google Scholar
  20. Fournier RA, Guindon L, Bernier PY, Ung C-H, Raulier F (2000 Nov/Dec) Spatial implementation of models in forestry. Forestry Chronicle 76(6):929–940Google Scholar
  21. Goodchild MF, Quattrochi DA (1997) Scale, multiscaling, remote sensing, and GIS. In: Goodchild MF, Quattrochi DA (eds) Scale in remote sensing and GIS. Lewis Publishers, Boca Raton, FL, pp 1–26Google Scholar
  22. Haddow KA, King DJ, Pouliot DA, Pitt DG, Bell FW (2000 Nov/Dec) Early regeneration conifer identification and competition cover assessment using airborne digital camera imagery. Forestry Chronicle 76(6):915–928Google Scholar
  23. Hillel D (2003) Introduction to environmental soil physics. Academic, Amsterdam, 494 ppGoogle Scholar
  24. Hershey RR, Befort WA (1995) Aerial Photo Guide to New England Forest Cover Types. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE-195Google Scholar
  25. Hopmans JW, Nielsen DR, Byrant RB (2002) How useful are small-scale soil hydraulic property measurements for large-scale vadoze zone modelling? In: Raats PA, Smiles PAC, Warrik AW (eds) Environmental mechanics: Water, mass, and energy transfer in the biosphere, vol 129, Geophys Monogr. AGU, Washington, 247 ppCrossRefGoogle Scholar
  26. Isachenko AG (1973) Principles of landscape science and physical-geographic regionalization. University of Melbourne Press, Melbourne, Australia, 311 ppGoogle Scholar
  27. Jones JA, Grant GE (1996) Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon. Water Resour Res 32:959–974CrossRefGoogle Scholar
  28. Jost G, Weiler M, Gluns DR, Alila Y (2007) The influence of forest and topography on snow accumulation and melt at the watershed-scale. J Hydrol 347:101–115CrossRefGoogle Scholar
  29. Kasischke ES, Goetz S, Hansen MO, Ozdogan M, Rogan J, Ustin SL, Woodcock CE (2004) Temperate and boreal forests. In: Ustin SL (ed) Remote sensing for natural resource management and environmental monitoring. Wiley, Hoboken, NJ, pp 147–238Google Scholar
  30. King DJ (1995) Airborne multispectral digital camera and video sensors: a critical review of systems designs and applications. Can J Remote Sens 21:245–273Google Scholar
  31. Klemes V (1982) Stochastic models of rainfall-runoff relationship. In: Singh VP (ed) Statistical analysis of rainfall and runoff. Water Resources Publication, Littleton, COGoogle Scholar
  32. Koivusalo H, Kokkonen T (2002) Snow processes in a forest clearing and in a coniferous forest. J Hydrol 262:145–164CrossRefGoogle Scholar
  33. Kokkonen TS, Jakeman AJ (2003) Structural effects of landscape and land use on streamflow response. In: Beck MB (ed) Environmental foresight and models: a manifesto. Elsevier, OxfordGoogle Scholar
  34. Kottegoda NT, Natale L, Raiteri E (2003) Reference parsimonious approach to stochastic multisite modeling and disaggregation of daily rainfall. J Hydrol 274:47–61CrossRefGoogle Scholar
  35. Krogstad F, Schiess P (2000) Cumulative impact estimation for landscape scale forest planning. In: 4th international conference on integrating GIS and environmental modeling (GIS/EM): problems, prospects and research needs. Banff, Alberta, Canada, 2–8 Sept 2000: GIS/EM4 no 59Google Scholar
  36. Lambers H, Stuart Chapin F III, Pons TL (2009) Plant physiological ecology. Springer, Berlin, 610 ppGoogle Scholar
  37. Landsberg JJ, Gower ST, Roy J (1997) Applications of physiological ecology to forest ­management. Academic, San Diego, CA, 354 ppGoogle Scholar
  38. Lenz R, Haber W, Tenhunen JD (2001) A historical perspective on the development of ecosystem and landscape research in Germany. Ecol Stud 147:17–35Google Scholar
  39. Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New York, 763 ppGoogle Scholar
  40. Lovett A, Appleton K (eds) (2008) GIS for environmental decision-making. CRC Press, Boca Raton, FL/Taylor & Francis Group, London, 259 ppGoogle Scholar
  41. Lubello D (2008) A rule-based SDSS for integrated forest harvesting planning. Ph.D. Thesis, Università degli. Studi di Padova, Padova. www.isocarp.net/Data/case_studies/1605.pdf 2009-06-10
  42. Lundberg A, Koivusalo H (2003) Estimating winter evaporation in boreal forests with operational snow course data. Hydrol Process 17(8):1479–1493CrossRefGoogle Scholar
  43. Matthies M, Giupponi C, Ostendorf NB (2007) Environmental decision support systems, current issues, methods and tools. Environ Modell Softw 22:123–127CrossRefGoogle Scholar
  44. Mauser W, Tenhunen JD, Schneider K, Ludwig R, Stolz R, Geyer R, Falge E (2001) Remote sensing, GIS and modelling: assessing spatially distributed water, carbon, and nutrient balances in the Ammer river catchment in Southern Bavaria. Ecol Stud 147:583–619Google Scholar
  45. McNulty SG, Vose JM, Swank WT (1997) Scaling predicted pine forest hydrology and productivity across the Southern United States. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publisher, Boca Raton, FL, pp 187–209Google Scholar
  46. Mesev V (ed) (2007) Integration of GIS and remote sensing. Wiley, New York, 296 ppGoogle Scholar
  47. Miller I, Knopf S, Kossik R (2005) Linking general-purpose dynamic simulation models with GIS. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis and modeling. ESRI Press, Redlands, CA, pp 113–129Google Scholar
  48. National Research Council (2008) Hydrologic Effects of a Changing Forest landscape (Free Executive Summary). Committee on Hydrologic Impacts of Forest management, http://www.nap.edu/catalog/12223.html 2009-06-10
  49. Openshaw S, Taylor PJ (1981) The modifiable areal unit problem. In: Wrigley N, Bennett RJ (eds) Quantitative geography: a British view. Routledge & Keegan, London, pp 60–70Google Scholar
  50. Passioura JB (1996) Simulation models: Science, snake oil, education, or engineering. Agron J 88:690–694CrossRefGoogle Scholar
  51. Pattee HH (ed) (1973) Hierarchy theory: the challenge of complex systems. G. Braziller, New York, 156 ppGoogle Scholar
  52. Pecknold S, Lovejoy S, Schertzer D, Hooge C (1997) Multifractals and resolution dependence of remotely sensed data: GSI to GIS. In: Goodchild MF, Quattrochi DA (eds) Scale in remote sensing and GIS. Lewis Publishers, Boca Raton, FL, pp 361–394Google Scholar
  53. Peterson DL, Parker VT (eds) (1998) Ecological scale: theory and applications. Columbia University Press, New York, 608 ppGoogle Scholar
  54. Pitt DG, Runesson U, Bell FW (2000) Application of large- and medium –scale aerial photographs to forest vegetation management: a case study. Forestry Chronicle 76(6):903–928Google Scholar
  55. Riitters KH (2005) Downscaling indicators of forest habitat structure from national assessments. Ecol Indicators 5(4):273–279CrossRefGoogle Scholar
  56. Sankey TT (2008) Scale, effects. In: Shekar S, Xiong H (eds) Encyclopedia of GIS. Springer, Berlin, pp 1021–1026CrossRefGoogle Scholar
  57. Schertzer D, Lovejoy S (1985) Generalized scale invariance in turbulent phenomena. Phys-Chem Hydrodyn J 6:623–635Google Scholar
  58. Schlerf M, Borens S, Seeling S, Hill J (2007) Land use and land cover change in Rhineland-Palatinate based on multi-temporal image classification. In: Schüler G, Gellweiler I, Seeling S (eds) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitteilungen aus der Forchungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr. 64/07. Zentralstelle der Forstverwaltung, Trippstadt, pp 237–245Google Scholar
  59. Schüler G (2006) Identification of flood-generating forest areas and forestry measures for water retention. For Snow Landsc Res 80(1):99–114Google Scholar
  60. Schüler G, Gellweiler I, Seeling S (2007) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitteilungen aus der Forchungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr. 64/07. Zentralstelle der Forstverwaltung, Trippstadt, 337 ppGoogle Scholar
  61. Schumm SA (1988) Variablity of the fluvial system in space and time. In: Rosswall T, Woodmansee RG, Risser PG (eds) Scales and global change. Spatial and temporal variability in biospheric and geospheric processes. SCOPE 35. Wiley, New York, pp 225–250Google Scholar
  62. Sedykh VN (1995) Using aerial photography and satellite imagery to monitor forest cover in western Siberia. Water Air Soil Pollut 82:499–507CrossRefGoogle Scholar
  63. Seeling S, Nink S, Vohland M (2007) Methodenentwicklung zur Ableitung von Raummustern der Oberbodenfeuchte aus Fernerkundungsdaten. In: Schüler G, Gellweiler I, Seeling S (eds) Dezentraler Wasserrückhalt in der Landschaft durch vorbeugende Maßnahmen der Waldwirtschaft, der Landwirtschaft und im Siedlungswesen. Mitteilungen aus der Forchungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz, Nr. 64/07. Zentralstelle der Forstverwaltung, Trippstadt, pp 255–266Google Scholar
  64. Sheppard E, McMaster RB (eds) (2004) Scale and geographic inquiry: nature, society, and method. Wiley–Blackwell, Oxford, 288 ppGoogle Scholar
  65. Smith L, Wheatcraft SJ (2003) Groundwater flow. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 6.1–6.58Google Scholar
  66. Souza C Jr, Firestone L, Silva LM, Roberts D (2003) Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Rem Sens Environ 87:494–506CrossRefGoogle Scholar
  67. Sturtevant BR, Fall A, Kneeshaw DD, Simon NPP, Papaik MJ, Berninger K, Doyon F, Morgan DG, Messier C (2007) A toolkit modeling approach for sustainable forest management planning: achieving balance between science and local needs. Ecol Soc 12(2):7, URL: http://www.ecologyandsociety.org/vol12/iss2/art7/2009-06-10Google Scholar
  68. Tate NJ, Atkinson PM (2001) Modelling scale in geographical information science. Wiley, New York, 292 ppGoogle Scholar
  69. Tuli A, Kosugi K, Hopmans JW (2001) Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution. Adv Water Resour 24:677–688CrossRefGoogle Scholar
  70. Turner MG (1989) Landscape ecology: the effects of pattern on process. Ann Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  71. Turner MG, Gardner RH, O’Neill RV (2001) The critical concept of scale. In: Turner MG, Gardner RH, O’Neill RV (eds) Landscape ecology in theory and practice: pattern and process. Springer, New York, pp 25–45Google Scholar
  72. Urban DL, O’Neill RV, JrHH S (1987) Landscape ecology: a hierarchical perspective can help scientists understand spatial patterns. BioScience 37:119–127CrossRefGoogle Scholar
  73. Uuemaa E, Roosaare J, Mander Ü (2005) Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol Indic 5:350–369CrossRefGoogle Scholar
  74. Vacik H, Lexer MJ (2001) Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. For Ecol Manage 143:65-76Google Scholar
  75. Ward AD, Trimble SW (2003) Environmental hydrology, 2nd edn. CRC Press, Boca Raton, FL, 504 ppGoogle Scholar
  76. Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, New York, 330 ppCrossRefGoogle Scholar
  77. Wilby J (1994) A critique of hierarchy theory. Syst Pract Action Res 7(6/Dec):653–670Google Scholar
  78. Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19(2):125–138CrossRefGoogle Scholar
  79. Wu J, David JL (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Modell 153:7–26CrossRefGoogle Scholar
  80. Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17(8):761–782CrossRefGoogle Scholar
  81. Yu X (2007) Methods and techniques for forest change detection and growth estimation using airborne laser scanning data. Dissertation of the degree of Doctor of Science, Publications of the Finnish Geodetic Inst, N:0 137, KirkkonummiGoogle Scholar
  82. Zhang N, Yu Z, Yu G, Wu J (2006) Scaling up ecosystem productivity from patch to landscape: a case study of Changbai Mountain Nature Reserve, China. Landscape Ecol 22:303–315. doi: 10.1007/s10980-006-9027-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elve Lode
    • 1
    • 2
    Email author
  • Matthias Langensiepen
    • 3
  • Jüri Roosaare
    • 4
  • Gebhard Schueler
    • 5
  • Harri Koivusalo
    • 6
  1. 1.Institute of EcologyTallinn UniversityTallinnEstonia
  2. 2.Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Institute of Crop Science and Resource Protection, Crop Science GroupUniversity of BonnBonnGermany
  4. 4.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  5. 5.Research Institute for Forest Ecology and Forestry Rheinland-PfalzTrippstadtGermany
  6. 6.Department of Civil and Environmental EngineeringAalto University School of Science and TechnologyAaltoFinland

Personalised recommendations