Advertisement

How Mediterranean Deciduous Trees Cope with Long Summer Drought? The Case of Quercus pyrenaica Forests in Western Spain

  • Gerardo MorenoEmail author
  • Juan F. Gallardo
  • María Ángeles Vicente
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 212)

Abstract

The functional characteristics of Mediterranean deciduous trees provide an interesting model for investigating adaptative mechanisms to drought, useful to understand future changes of northern forests in scenery of climate change. In this article we analyse how a Mediterranean deciduous oak, Quercus pyrenaica, with a short vegetative period coincident with summer drought, cope with water deficit in that period. We revised published data on temporal dynamic of soil moisture and physiological status of tree leaves of several forest stands of Central–Western Spain and discuss the significance of soil water reserve and deep rooting system on the maintenance of tree transpiration and physiological activity of the trees along summer drought. Results revealed that (i) Q. pyrenaica oak is only slightly water-limited during summer drought, (ii) Q. pyrenaica oaks depend on thick weathered, porous bedrocks, and (iii) Q. pyrenaica is a well-performing deciduous oak to cope with increasing summer drought.

Keywords

Soil water dynamic Leaf water potential Stomatal conductance Evapotranspiration Adaptative traits Rainfall gradient 

References

  1. Aranda I, Gil L, Pardos JA (2004) Osmotic adjustment in two temperate oak species [Quercus pyrenaica Willd and Quercus petraea (Matt.) Liebl] of the Iberian Peninsula in response to drought. Invest Agrar: Sist Recur For 13:339–345Google Scholar
  2. Baldocchi DD, Liukang X (2007) What limits evaporation from Mediterranean oak woodlands – the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv Water Resour 30:2113–2122CrossRefGoogle Scholar
  3. Blake-Jacobson ME (1987) Stomatal conductance and water relations of shrubs growing at the chaparral-desert ecotone in California and Arizona. In: Tenhunen JD, Catarino EM, Lange OL, Oechel WC (eds) Plant responses to stress. Functional analysis in Mediterranean ecosystems, vol G15, Nato ASI Ser. Springer Verlag, Berlin, pp 223–245CrossRefGoogle Scholar
  4. Bréda N, Huc R, Garnier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of eco-physiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  5. Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595CrossRefGoogle Scholar
  6. Čermák J, Nadezhdina N, Raschi A, Tognetti R (1998) Sap flow in Quercus pubescens and Quercus cerris stands in Italy. In 4th International workshop on measuring sap flow in intact plants. IUFRO Publications, Mendel University, Zidlochovice, Czech RepublicGoogle Scholar
  7. Chambers JL, Hinckley TM, Cox GS, Metcalf CL, Aslin RG (1985) Boundary-line analysis and models of leaf conductance for four oak-hickory forest species. For Sci 3:437–450Google Scholar
  8. Ciais Ph, Reichstein M, Viovy N, Granier A, Ogeé J, Allard V, Aubinet M, Buchmann N, Chr B, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2003) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefGoogle Scholar
  9. Corcuera L, Camarero J, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16:465–472CrossRefGoogle Scholar
  10. Corcuera L, Camarero J, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92CrossRefGoogle Scholar
  11. Cubera E, Moreno G (2007) Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in Dehesas of central western Spain. Ann For Sci 64:355–364CrossRefGoogle Scholar
  12. Damesin C, Rambal S, Joffre R (1998) Cooccurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecol 18:195–204CrossRefGoogle Scholar
  13. Davi H, Barbaroux C, Francois C, Dufrêne E (2009) The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests. Agr For Meteorol 149:349–361CrossRefGoogle Scholar
  14. David TS, Ferreira MI, Cohen S, Pereira JS, David JS (2004) Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric For Meteorol 122:193–205CrossRefGoogle Scholar
  15. Duhme F, Hinckley TM (1992) Daily and seasonal variation in water relations of macchia shrubs and trees in France (Montpellier) and Turkey (Antalya). Vegetatio 99–100:185–198CrossRefGoogle Scholar
  16. Gallardo JF (2000) Biogeochemistry of Mediterranean forest ecosystems: a case study. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 423–460Google Scholar
  17. Gallardo JF, Martín A, Santa-Regina I (1998) Nutrient cycling in deciduous forest ecosystems of the ‘Sierra de Gata’ mountains: aboveground litter production and potential nutrient return. Ann Sci For 55:749–769CrossRefGoogle Scholar
  18. Gallardo JF, Molina E (1979) Relaciones entre procesos edáficos y superficies morfológicas de la Cuenca Duero, vol 1, Actas I Reunión Geológica. Salamanca, Spain, pp 211–223Google Scholar
  19. Gallego HA, Rico M, Moreno G, Santa Regina I (1994) Leaf water potential and stomatal conductance in Quercus pyrenaica Willd forests: vertical gradients and response to environmental factors. Tree Physiol 14:1039–1047PubMedCrossRefGoogle Scholar
  20. Goldberg V, Bernhofer C (2008) Testing different decoupling coefficients with measurements and models of contrasting canopies and soil water conditions. Ann Geophys 26:1977–1992CrossRefGoogle Scholar
  21. Grier CC, Running SW (1977) Leaf area of mature northwestern coniferous forests: relation to the site water balance. Ecology 58:893–899CrossRefGoogle Scholar
  22. Hernández-Santana V, David TS, Martínez-Fernández J (2008a) Environmental and plant-based controls of water use in a Mediterranean oak stand. For Ecol Manag 255:3707–3715CrossRefGoogle Scholar
  23. Hernández-Santana V, Martínez-Fernández J, Morán C, Cano A (2008b) Response of Quercus pyrenaica (melojo oak) to soil water deficit: a case study in Spain. Eur J For Res 127:369–378CrossRefGoogle Scholar
  24. IPCC (2007) Climate change 2007: the physical scientific basis. Cambridge University Press, Cambridge, UK, 1009 ppGoogle Scholar
  25. ISSS-ISRIC-FAO 1998. World Reference Base for Soil Resources. World Soil Resources, Reports No. 84. FAO UN, Rome, 1998Google Scholar
  26. Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49CrossRefGoogle Scholar
  27. Jones HG (1992) Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  28. Kurz-Besson C, Otieno D, Lobo do Vale R, Siegwolf R, Schmidt M, Herd A, Nogueira C, David T, David J, Tenhunen J, Pereira J, Chaves M (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378CrossRefGoogle Scholar
  29. Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol 335:37–54CrossRefGoogle Scholar
  30. Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44:387–393CrossRefGoogle Scholar
  31. Martínez-Vilalta J, Piñol J, Beven K (2002) A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol Model 155:127–147CrossRefGoogle Scholar
  32. Mediavilla S, Escudero A (2003) Stomata l responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol 23:987–996PubMedCrossRefGoogle Scholar
  33. Merino J, Field C, Mooney HA (1982) Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. I. Growth and CO2 exchange analysis. Oecologia 53:208–213CrossRefGoogle Scholar
  34. Moreno G, Gallardo JF, Ingelmo F, Cuadrado S, Hernández J (1996) Soil water budget in 4 Quercus pyrenaica forests across a rainfall gradient. Arid Soil Res Rehabil 10:65–84CrossRefGoogle Scholar
  35. Moreno G, Obrador JJ, Cubera E, Dupraz C (2005) Root distribution in dehesas of Central-Western Spain. Plant Soil 277:153–162CrossRefGoogle Scholar
  36. Ogaya R, Peñuelas J (2007) Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecol 31:168–173CrossRefGoogle Scholar
  37. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biol 9:131–140CrossRefGoogle Scholar
  38. Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora in Spain. For Sci 47:214–218Google Scholar
  39. Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol Biochem 39:409–417CrossRefGoogle Scholar
  40. Rambal S (1984) Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62:18–25CrossRefGoogle Scholar
  41. Rambal S (1993) The differential role of mechanisms for drought resistance in a Mediterranean evergreen shrub: a simulation approach. Plant Cell Environ 16:35–44CrossRefGoogle Scholar
  42. Rico M, Gallego HA, Moreno G, Santa Regina I (1996) Stomata l response of Quercus pyrenaica to environmental factors in 2 sites differing in their annual rainfall (Sierra de Gata, Spain). Ann For Sci 53:221–234CrossRefGoogle Scholar
  43. Rodá F, Retana J, Gracia CA, Bellot J (1999) Ecology of Mediterranean evergreen oak forests. Springer, Berlin, p 373CrossRefGoogle Scholar
  44. Savé R, Castell C, Terradas J (1999) Gas exchange and water relations. In: Rodá F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forests, Ecological Studies, vol 137. Springer, Berlin, pp 135–144CrossRefGoogle Scholar
  45. Schiller G, Cohen S, Ungar ED, Moshe Y, Herr N (2007) Estimating water use of sclerophyllous species under East-Mediterranean climate III. Tabor oak forest sap flow distribution and transpiration. For Ecol Manag 238:147–155CrossRefGoogle Scholar
  46. Schneider K, Turrión MB, Grierson PF, Gallardo JF (2001) Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the ‘Sierra de Gata’, western central Spain. Biol Fertil Soils 34:151–155CrossRefGoogle Scholar
  47. Silla F, Escudero A (2006) Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. samplings. Plant Soil 282:301–311CrossRefGoogle Scholar
  48. Sobrado MA (1986) Aspects of tissue water relations and seasonal changes of leaf water potential components of evergreen and deciduous species coexisting in tropical dry forest. Oecologia 68:413–416CrossRefGoogle Scholar
  49. Sternberg PD, Anderson MA, Graham RC, Beyers JL Tice KR (1996) Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72:89–98CrossRefGoogle Scholar
  50. Valladares F, Peñuelas J, De Luis-Calabuig E (2004) Impactos sobre los ecosistemas terrestres. In: Moreno JM (Coord) Evaluación Preliminar de los impactos en España del cambio climático (ECCE). Ministerio de Medio Ambiente, Madrid, pp 65–112Google Scholar
  51. Vicente MA, Gallardo JF, Moreno G, González MI (2003) Comparison of soil water-contents as measured with a neutron probe and time domain reflectometry in a Mediterranean forest (‘Sierra de Gata’, Central Western Spain). Ann For Sci 60:185–193CrossRefGoogle Scholar
  52. Winkel T, Rambal S (1990) Stomata l conductance of some grapevines growing in the field under a Mediterranean environment. Agric For Meteorol 51:107–121CrossRefGoogle Scholar
  53. Witty JH, Graham RC, Hubbert KR, Doolittle JA, Wald JA (2003) Contributions of water supply from the weathered bedrock zone to forest soil quality. Geoderma 114:389–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gerardo Moreno
    • 1
    Email author
  • Juan F. Gallardo
    • 2
  • María Ángeles Vicente
    • 2
  1. 1.Forestry SchoolUniversity of ExtremaduraPlasenciaSpain
  2. 2.CSIC, I.R.N.A.SalamancaSpain

Personalised recommendations