Skip to main content

Contaminant Cycling Under Climate Change: Evidences and Scenarios

  • Chapter
  • First Online:
  • 860 Accesses

Abstract

Marine ecosystems are influenced by many factors related with human activity, such as eutrophication, chemical contamination, selective ­overfishing, ­bottom trawling and blast fishing. However, various regions have shown at least some changes that were likely to be attributable to recent climate change. Although various works have pointed to repercussions of climate change on ocean processes at physical and biological levels, a few thoughts were highlighted on contaminant pathways in concert with the predicted and confirmed climate changes. Human activities released during the last century a cocktail of contaminants that are stored in soil, coastal sediments and ice. Predicted alterations under climatic changes raise pertinent questions on this topic. Are hazardous substances stored in those compartments released to cycling within the ecosystem under climate changes? To what extent are quantities injected in the ecosystems toxic to marine organisms? Does it affect ecosystem functioning?

This article reviews relevant aspects of contaminant cycling under climate changes and gives examples of evidences and scenarios. The selected examples are: melting of ice in the Arctic and the already observed increase of trace metals ­availability in water; temperature increase and the enhanced production of ­methyl mercury, a potent neurotoxin; prolonged periods of UV radiation and ­mercury release from soils and air-exposed sediments; sea-level rise and coastal erosion and the release of metals and organic pollutants from salt marshes; heavy rainfall events and abrupt input of historical and present contaminants from agriculture fields, obsolete industrial and urbanised areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACIA (2005) Arctic climate impact assessment, Cambridge University Press, New York, 1038 pp

    Google Scholar 

  • Allen GP, Salomon JC, Bassoulet P, Du Penhoat Y, De Grandpre C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90

    Article  Google Scholar 

  • AMAP (1998) AMAP assessment report: Arctic pollution issues, Arctic monitoring and assessment programme, Oslo, Norway

    Google Scholar 

  • AMAP (2006) Arctic monitoring and assessment program. Acidifying pollutants, Arctic haze and acidification in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Amyot M, Mierle G, Lean D, McQueen D (1997) Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochem Cosmochem Acta 61:975–987

    Article  Google Scholar 

  • Ariya PA, Dastoor AP, Amyot M, Schroeder WH, Barrie L, Anlauf K, Raofie F, Ryzhkov A, Davignon D, Lalonde J, Steffen A (2004) The Arctic: A sink for mercury. Tellus 56B:397–403

    Google Scholar 

  • Avoine J, Allen JP, Nichols M, Salomon JC, Larsonneur C (1981) Suspended-sediment transport in the Seine estuary, France : Effect of man-made modifications on estuary-shelf sedimentology. Mar Geol 40:119–137

    Article  Google Scholar 

  • Bale AJ, Morris AW, Howland RJM (1985) Seasonal sediment movement in the Tamar estuary. Oceanol Acta 8:1–6

    Google Scholar 

  • Banus M, Valiela I, Teal J (1974) Export of lead from salt marshes. Mar Pollut Bull 5:6–9

    Article  Google Scholar 

  • Banus M, Valiela I, Teal J (1975) Lead, zinc and cadmium budgets in experimentally enriched salt marsh ecosystems. Estuar Coast Mar Sci 3:421–430

    Article  Google Scholar 

  • Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol NOV:4267–4271

    Google Scholar 

  • Barnett TP, Pierce DW, AchutaRao KM, Gleckler PL, Santer BD, Gregory JM, Washington WM (2005) Penetration of human induced warming into the world’s oceans. Science 309:284–287

    Article  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edward m (2002). Reorganization of North Atlanctic marine copepod biodiversity and climate. Science 31(296):1692–1694

    Article  Google Scholar 

  • Bedard DL, Bunnell SC, Smullen LA (1996) Stimulation of microbial para-dechlorination of polychlorinated biphenyls that have persisted in Housatonic River sediments for decades. Environ Sci Technol 30:687–694

    Article  Google Scholar 

  • Benner R, Fogel ML, Sprague EK (1991) Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnol Oceanogr 36:1358–1374

    Article  Google Scholar 

  • Berg T, Sekkesæter S, Steinnes E, Valdal A-K, Wibetoe G (2003) Springtime depletion of mercury in the European Arctic as observed at Svalbard. Sci Total Environ 304(1–3):43–51

    Article  Google Scholar 

  • Beucher C, Wong-Wah-Chung P, Richard C, Mailhot G, Bolte M, Cossa D (2002) Dissolved gaseous mercury formation under UV irradiation of unamended tropical waters from French Guyana. Sci Total Environ 290:131–138

    Article  Google Scholar 

  • Brander KM, Dickson RR, Edwards M (2003). Use of continuous plankton recorder information in support of marine management applications in fisheries, environmental protection, and in the study of ecosystem response to environmental change. Prog. Oceanogr. 58:175–191

    Google Scholar 

  • Breteler R, Teal JM (1981) Trace element enrichments in decomposing litter of Spartina alterniflora. Aquat Bot 11:111–120

    Article  Google Scholar 

  • Brooks SB, Saiz-Lopez A, Skov H, Lindberg SE, Plane JMC, Goodsite ME (2006) The mass balance of mercury in the springtime arctic environment. Geophys Res Lett 33:L13812. doi:10.1029/2005GL025525

    Article  Google Scholar 

  • Burke D, Weis J, Weis P (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51:153–159

    Article  Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace elements from salt marsh plants. Mar Environ Res 67(2):75–82

    Article  Google Scholar 

  • Caetano M, Vale C, Falcão M (2006) Particulate metal distribution in Guadiana estuary punctuated by flood episodes. Estuar Coast Shelf Sci 70:109–116

    Article  Google Scholar 

  • Caldwell MM, Flint SD (2006) Use and evaluation of biological spectral UV weighting functions for the ozone reduction issue. In: Ghetti F, Checcucci G, Bornman JF (eds) Environmental UV radiation: Impact on ecosystems and human health and predictive models. Springer, The Netherlands, pp 71–84

    Chapter  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    Article  Google Scholar 

  • Canário J, Vale C (2004) Rapid release of mercury from intertidal sediments exposed to solar radiation: A field experiment. Environ Sci Technol 38:3901–3907

    Article  Google Scholar 

  • Canário J, Vale C, Caetano M (2003a) Mercury in contaminated sediments and pore waters at a contaminated site of the Tagus Estuary. Cienc Mar 29(4):535–545

    Google Scholar 

  • Canário J, Vale C, Caetano M, Madureira MJ (2003b) Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Portugal). Environ Poll 126(3):425–433

    Article  Google Scholar 

  • Canário J, Vale C, Caetano M (2005) Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar Poll Bull 50:1142–1145

    Article  Google Scholar 

  • Canário J, Branco V, Vale C (2007) Seasonal variation of monomethylmercury concentrations in surface sediments of the Tagus estuary (Portugal). Environ Poll 148:380–383

    Article  Google Scholar 

  • Carlson AE, LeGrande AN, Oppo DW, Came RE, Schmidt GA, Anslow FS, Licciardi JM, Obbink EA (2008) Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat Geosci 1:620–624

    Article  Google Scholar 

  • Castaing P, Aleen GP (1981) Mechanisms controlling seaward escape of suspended sediment from the Gironde: A macrotidal estuary in France. Mar Geol 40:101–118

    Article  Google Scholar 

  • Chang BV, Liu WG, Yuan SY (2001) Microbial dechlorination of three PCB congeners in river sediment. Chemosphere 45:849–856

    Article  Google Scholar 

  • Chang FC, Yen J-H, Wang Y–S (2002) Dechlorination of PCBs by UV irradiation in water and their correlative of the charge distribution on carbon atom. Organohalogen Compd 58:13–16

    Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicity of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  Google Scholar 

  • Connell DW, Wu RSS, Richardson BJ, Leung K, Lam PSK, Connell PA (1998) Occurrence of persistent organic contaminants and related substances in Hong Kong marine areas: An overview. Mar Poll Bull 36:376–384

    Article  Google Scholar 

  • Constant P, Poissant L, Villemur R, Yumvihoze E, Lean D (2007) Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada). J Geophys Res 112:D08309. doi:10.1029/2006JD007961

    Article  Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall, London

    Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (1999) Pore water distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste. Estuar Coast Shelf Sci 48:415–428

    Article  Google Scholar 

  • Dannenberger D (1996) Chlorinated microcontaminants in surface sediments of the Baltic Sea: Investigations in the Belt Sea, the Arkona Sea and the Pomeranian Bight. Mar Pollut Bull 32:772–781

    Article  Google Scholar 

  • DEFRA (2002) Climate change scenarios for the UK

    Google Scholar 

  • Dorgelo J, Meester H, Vanvelzen C (1995) Effects of diet and heavy metals on growth rate and fertility in deposit-feeding snail Potamopyrgus jenkinsi (Smith) (Gastropoda: Hydrobiidae). Hydrobiologia 316:199–210

    Article  Google Scholar 

  • Douglas TA, Sturm M, Simpson WR, Blum JD, Alvare-Aviles L, Keeler GJ, et al. (2008) Influence of snow and ice crystals formation and accumulation on mercury deposition to the Arctic. Environ Sci Technol 42:1542–1552

    Article  Google Scholar 

  • Du Laing G, Ryckegem G, Tack F, Verloo M (2006) Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere 63:1815–1823

    Article  Google Scholar 

  • Ferrari CP, Dommergue A, Boutron CF, Jitaru P, Adams FC (2004) Profiles of mercury in the snow pack at Station Nord, Greenland shortly after polar sunrise, Geophys Res Lett 31:L03401. doi:10.1029/2003GL018961

    Article  Google Scholar 

  • Ferreira AM, Vale C (1995) The importance of runoff to DDT and PCB inputs to the Sado estuary and Ria Formosa. Netherlands J Aquat Ecol 29:211–216

    Article  Google Scholar 

  • Ferreira AM, Vale C (2001) Seasonal and inter-annual variations of PCB and DDT contents in the oyster Crassostrea angulata from the Sado estuary (Portugal). Cienc Mar 27:255–268

    Google Scholar 

  • Ferreira AM, Martins M, Vale C (2003) Influence of diffuse sources on levels and distribution of polychlorinated biphenyls in the Guadiana River estuary, Portugal. Mar Chem 83:175–184

    Article  Google Scholar 

  • Figuères G, Martin JM, Meybeck M, Seyler P (1985) A comparative study of mercury contamination in the Tagus Estuary (Portugal) and major French Estuaries (Gironde, Loire, Rhône). Estuar Coast Shelf Sci 20:183–203

    Article  Google Scholar 

  • Fitzgerald WF, Mason RP (1997) In mercury and its effects in the environment biology, Siegel A, Siegel H (eds). Marcel Decker, New York, pp 53–111

    Google Scholar 

  • Foote AL, Reynolds KA (1997) Decomposition of saltmeadow cordgrass (Spartina patens) in Louisiana coastal marshes. Estuaries 90:579–588

    Article  Google Scholar 

  • Frei C, Scholl R, Fukutome S, Schmidli J, Vidale PL (2006). Future change of precipitation extremes in Europe: Intercomparision of scenarios from regional climate models. J Geophys Res 111:D0 6105, 22p

    Google Scholar 

  • Garcia E, Amyot M, Ariya PA (2005) Relationship between DOC photochemistry and mercury redox transformations in temperatelakes and wetlands. Geochim Cosmochim Acta 69(8):1917–1924

    Article  Google Scholar 

  • Gill GA, Bloom NS, Cappellino S, Driscoll CT, Mason RP, Rudd JWM (1999) Sediment-water fluxes of mercury in Lavaca Bay, Texas. Environ Sci Technol 33:747–756

    Article  Google Scholar 

  • Gilmour C, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Poll 71:131–169

    Article  Google Scholar 

  • Goolsby DA (2000) Mississippi Basin nitrogen flux believed to cause gulf hypoxia. Eos. Trans Am Geophys Union 81:321–326

    Article  Google Scholar 

  • Gustin MS, Lindberg SE, Marsik F, Casimir A, Ebinghaus R, Edwards G, Fitzgerald-Huble C, Kemp R, Koch H, Leonard T, London J, Majewski M, Owens J, Pilote M, Poissant L, Rasmussen P, Schneeberger D, Schroeder W, Sommar J, Turner R, Vette A, Wallschlaeger D, Xiao ZF, Zhang HJ (1999) Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces. J Geophys Res 104(D17):21831–21844

    Article  Google Scholar 

  • Hackney CT, Cleary WJ (1987) Saltmarsh loss in Southeastern North Carolina Lagoons: Importance of sea-level rise and inlet dredging. J Coast Res 3(1):93–97

    Google Scholar 

  • Halupa P, Howes B (2004) Effects of tidally mediated litter moisture contents on decomposition of Spartina alterniflora and S. patens. Mar Biol 123:379–391

    Article  Google Scholar 

  • Hambrey MJ, Harland WB (1981) The evolution of climates. In: Greenwood PH, Cocks LRM (eds) The evolving Earth.Cambridge University Press, UK, pp 137–154

    Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Visscher PT (2004) Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar Chem 90:31–52

    Article  Google Scholar 

  • Hemminga MA, Buth GJC (1991) Decomposition in salt marsh ecosystems of the SW Netherlands: The effects of biotic and abiotic factors. Vegetatio 92:73–83

    Google Scholar 

  • Heugens EHW, Henriks AJ, Dekker T, van Straalen NM, Admiraal W (2001) A review on the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    Article  Google Scholar 

  • Hudson RJM, Gherini SA, Fitzgerald WF, Porcella DB (1995) Anthropogenic influences on the global mercury cycle: A model-based analysis. Water Air Soil Pollut 80:265–272

    Article  Google Scholar 

  • IPCC (2007) The Intergovernmental Panel on Climate Change, IPCC report, http://www.ipcc.ch/

  • Kennedy CJ, Walsh PJ (1997) Effects of temperature on xenobiotic metabolism. In: Wood CM, McDonald DG (eds) Global warming – implications for freshwater and marine fish. Cambridge University Press, UK, pp 303–324

    Google Scholar 

  • Kirk JL, St. Louis VL, Sharp ML (2006) Rapid reduction and reemission of mercury deposited into the snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environ Sci Technol 40:7590–7596

    Article  Google Scholar 

  • Lahoutifard N, Sparling M, Lean D (2005) Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada. Sci Total Environ 39:7597–7606

    Google Scholar 

  • Langer CS, Fitzgerald WF, Visscher PT, Vandal GM (2001) Biogeochemical cycling of methylmercury at Barn Island salt marsch, Stonington, CT, USA. Wetlands Ecol Mang 9:295–310

    Article  Google Scholar 

  • Larsen VJ, Schierup H (1981) Macrophyte cycling of zinc, copper, lead, and cadmium in the littoral zone of a polluted area and a non-polluted lake: II. Seasonal changes in heavy metal content of above-ground biomass and decomposing leaves of Phragmites australis (Cav.) Trin Aquat Bot 11:211–230

    Article  Google Scholar 

  • Lee KT, Tanabe S, Koh CH (2001) Contamination of polychlorinated biphenyls (PCBs) in sediments from Kyeonggi Bay and nearby areas, Korea. Mar Poll Bull 42:273–279

    Article  Google Scholar 

  • Libes S (1992) An introduction to marine biogeochemistry. Wiley, New York, pp 734

    Google Scholar 

  • Lin CJ, Pehkonen SO (1999) The chemistry of atmospheric mercury: A review. Atmos Environ 33:2067–2079

    Article  Google Scholar 

  • Lindberg S, Brook S, Lin C-J, Scott KJ, Landis MA, Stevens RK, Goodsite M, Richter A (2002) Dynamic oxidation of gaseous mercury in the Arctic troposphere at Polar Sunrise. Environ Sci Technol 36:1245–1256

    Article  Google Scholar 

  • Loseto L, Lean DRS, Siciliano SD (2004a) Snowmelt sources of methylmercury to high arctic ecosystems. Environ Sci Technol 38:3004–3010

    Article  Google Scholar 

  • Loseto LL, Siciliano SD, Lean DRS (2004b) Methylmercury production in high Arctic wetlands. Environ Toxicol Chem 23:17–23

    Article  Google Scholar 

  • Lyons BP, Pascoe CK, McFadzen IRB (2002) Phototoxicity of pyrene and benzo[a]pyrene to embryo-larval stages of the pacific oyster Crassostrea gigas, Mar Environ Res 54:627–631

    Article  Google Scholar 

  • Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WJ, Li YF, Wania F, Alaee M, Alexeeva JB, Backus SM, Bailey R, Bewers JM, Gobeil C, Halsall CJ, Harner T, Hoff JY, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Wagemann R, Yunker MB (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234

    Article  Google Scholar 

  • Macdonald RW, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342:5–86

    Article  Google Scholar 

  • Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:178–206

    Article  Google Scholar 

  • Martins M, Ferreira J, Calvão T, Figueiredo H (1984) Nutrientes no estuário do Tejo – comparação de situação em caudais médios e em cheia, com destaque para alterações na qualidade da água. Proceedings first Symposium Luso-Brasileiro de Eng. sanitária e Ambiental, pp 9

    Google Scholar 

  • Martins M, Ferreira AM, Vale C (2005) PCB composition in flood material and sediments from the Guardiana River estuary. Cienc Mar 31:285–291

    Google Scholar 

  • Martins M, Ferreira AM, Vale C (2008a) Retention and partitioning of polycyclic aromatic hydrocarbons in Sarcocornia fruticosa from two Portuguese salt marshes. Cienc Mar 34:373–380

    Google Scholar 

  • Martins M, Ferreira AM, Vale C (2008b) The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere 71:1599–1606

    Article  Google Scholar 

  • Mason RP, Benoit JM (2003) Organomercury compounds in the environment. In: Graig P (ed) Organometallic compounds in the environment. Wiley, West Sussex, UK, pp 57–99

    Chapter  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: Anthropogenic influence. Geochim Cosmochim Acta 58:3191–3198

    Article  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu GR (1999) Mercury in Chesapeake Bay. Mar Chem 65:77–96

    Article  Google Scholar 

  • Mason RP, Lawson NM, Sheu G-R (2001) Mercury in the Atlantic Ocean: Factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep Sea Res II 48:829–2853

    Google Scholar 

  • Mauro JBN, Guimarães JRD, Melamed R (1999) Mercury methylation in a tropical macrophyte: Influence of abiotic parameters. Appl Organometal Chem 13:631–636

    Article  Google Scholar 

  • McFarlane G, Pulkownik A, Burchet M (2003) Accumulation and distribution of heavy metals in grey mangrove, Avicennia marina (Forsk.) Vierh.: Biological indication potential. Environ Pollut 123:139–151

    Article  Google Scholar 

  • Meade R (1972) Transport and deposition of sediments in estuaries. In: Environmental framework of of coastl-plin estuaries. Geol Soc Am Memoirs 133:91–120

    Google Scholar 

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  Google Scholar 

  • Miranda P, Coelho, Tomé A, Valente MA (2002) 20th century Portuguese climate and climate scenario. In: Santos FD, Forbes K, Moita (eds) Climate change in Portugal. Scenarios, impacts and adaptation measures. SIAM Project, Gradiva, pp 27–83

    Google Scholar 

  • Mitsch W, Gosselink J (2000) Wetlands. Wiley, New York, pp 920

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilization and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    Article  Google Scholar 

  • Morton B, Blackmore G (2001) South China Sea. Mar Pollut Bull 42:1236–1263

    Article  Google Scholar 

  • Munthe J, McElroy WJ (1992) Some aqueous reactions of potential importance in the atmospheric chemistry of mercury. Atmos Environ 26A:553–557

    Google Scholar 

  • Myers R, Worm B (2003). Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Google Scholar 

  • Neckles H, Neill C (2004) Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiologia 286:155–165

    Article  Google Scholar 

  • Nriagu JO (1994) Mechanistic steps in the photoreduction of mercury in natural waters. Sci Total Environ 154:1–8

    Article  Google Scholar 

  • Nyman JA, DeLaune RD, Roberts HH, Patrick Jr, WH (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal salt marsh. Mar Ecol Prog Ser 96:269–279

    Article  Google Scholar 

  • Nyman JA, Carloss M, DeLaune RD, Patrick Jr, WH (1994) Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surf Proc Landf 19:69–84

    Article  Google Scholar 

  • O’Driscoll NJ, Poissant L, Canário J, Ridal J, Lean D (2007) Continuous analysis of dissolved gaseous mercury and mercury volatilization in the upper St. Lawrence River; exploring temporal trends and UV attenuation. Environ Sci Technol 41:5342–5348

    Article  Google Scholar 

  • Olsen CL, Larsen PJ, Mulholland KL, Von Damm JM, Grebmeier LC, Schaffner RJ, Diaz RJ, Nichols MM (1993) The concept of an equilibrium surface applied to particles sources and contaminant distributions in estuarine sediments. Estuaries 16:683–696

    Article  Google Scholar 

  • Outridge PM, Sanei H, Stern GA, Hamilton PB, Goodarzi F (2007) Evidence for control of mercury accumulation rates in Canadian high Arctic lake sediments by variations of aquatic primary productivity. Environ Sci Technol 41:5259–5265

    Article  Google Scholar 

  • Patra RW, Chapman JC, Lim EP, Gehrke PC (2007) The effects of three organic chemicals on the upper thermal tolerances of four freshwater fishes. Environ Toxicol Chem 26:1454–1459

    Article  Google Scholar 

  • Pelletier MC, Burgess RM, Ho KT, Kuhn A, McKinney RA, Ryba SA (1997) Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. Environ Toxicol Chem 16:2190–2199

    Article  Google Scholar 

  • Pereira P, Caçador I, Vale C, Caetano C, Costa A (2007) Decomposition of belowground biomass litter and metal dynamics in salt marshes (Tagus Portugal). Sci Total Environ 380:93–101

    Article  Google Scholar 

  • Philippart CJM (2007) Impact of climate change on the European marine and coastal environment. Marine Board Position Paper 9, European Science Foundation, France, pp 83

    Google Scholar 

  • Phillips DJH (1986) Use of organisms to quantify PCBs in marine and estuarine environments. In: Waid JS (ed) PCBs and the environment, vol 2. CRC Press, Florida, pp 127–181

    Google Scholar 

  • Poissant L (2000) Atmospheric mercury transport, oxidation and fallout in northern Québec (Nunavik): An important potential route of contamination. Northern Contaminants Program, synopsis of research 1999–2000. Montréal, Canada, Indian and Northern Affairs Canada, 0-662-29320-7, pp 132–136

    Google Scholar 

  • Poissant L, Dommergue A, Ferrari CP (2002) Mercury as a global pollutant. J Phys IV France 12:143–160

    Article  Google Scholar 

  • Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28:2233–2241

    Article  Google Scholar 

  • Reed DJ (1990) The impact of sea-level rise on coastal salt marshes. Prog Phys Geog 14:465–481

    Article  Google Scholar 

  • Reed DJ, Foote AL (1997) Effect of hydrologic management on marsh surface sediment deposition in coastal Louisiana. Estuaries 20:301–311

    Article  Google Scholar 

  • Sanders G, Hamilton-Taylor J, Jones KC (1996) PCB and PAH dynamics in a small rural lake. Environ Sci Technol 30:2958–2966

    Article  Google Scholar 

  • Santos FD, Forbes K, Moita (2006) Climate change in Portugal. Scenarios, impacts and adaptation measures. SIAM Project, Gradiva, pp 454

    Google Scholar 

  • Schiedek D, Sundelin B, Readman JW, MacDonald RW (2007) Interactions between climate change and contaminants. Mar Pollut Bull 54:1845–1856

    Article  Google Scholar 

  • Schroeder WH, Yarwood G, Niki H (1991) Transformation processes involving mercury species in the atmosphere — results from a literature survey. Water Air Soil Pollut 56:653–666

    Article  Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Arctic springtime depletion of mercury. Nature 394:331–332

    Article  Google Scholar 

  • Simas T, Nunes JP, Ferreira JG (2001) Effects of global climate change on coastal salt marshes. Ecological Modeling 139:1–15

    Article  Google Scholar 

  • Skov H, Christensen JH, Goodsite ME, Heidam NZ, Jensen B, Wahlin P, Geernaert G (2004) Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environ Sci Technol 38(8):2373–2382

    Article  Google Scholar 

  • Steffen A, Schroeder W, Bottenheim J, Narayan J, Fuentes JD (2002) Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. Atmos Environ 36:2653–2661

    Article  Google Scholar 

  • St. Louis VL, Sharp MJ, Steffen A, May A, Barker J, Kirk JL, Kelly DJA, Arnott SE, Keatley B, Smol JP (2005) Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian high Arctic. Environ Sci Technol 39(8):2686–2701

    Article  Google Scholar 

  • St. Louis VL, Hintelmann H, Graydon JA, Kirk JL, Barker J, Dimock B, Sharp MJ, Lehnherr I (2007) Methylated mercury species in Canadian high Arctic marine surface waters and snowpacks. Environ Sci Technol 41(18):6433–6441

    Article  Google Scholar 

  • Sundby B, Vale C, Caetano M, Luther G (2003) Redox chemistry in the root zone of a salt marsh sediment in the Tagus estuary, Portugal. Aquat Geochem 9:257–271

    Article  Google Scholar 

  • Tang NH, Myers TE (2002) PCB removal from contaminated dredge material. Chemosphere 46:477–484

    Article  Google Scholar 

  • Teng H, Washington WM, Meehl GA, Buja LE, Strand GW (2006) Twenty-first century Arctic climate change in the CCSM3 IPCC scenario simulations. Clim Dyn 26:601–616

    Article  Google Scholar 

  • Tett SFB, Stott PA, Allen MR, Ingram WJ, Mitchell JFB (1999) Causes of twentieth-century temperature change near the Earth’s surface. Nature 339:569–572

    Article  Google Scholar 

  • Titus JG, Park RA, Leatherman SP, Weggel JR, Greene MS, Mausel PW, Brown S, Gaunt C, Trehan M, Yohe G (1991) Greenhouse effect and sea level rise: The cost of holding back the sea. Coast Manage 19:171–210

    Article  Google Scholar 

  • UNEP (1997) Global Environment Outlook-1. Global State of the Environment Report 1997 www.unep.org/GEO////geo1/misc/about.htm

  • Vale C (1981) Input of suspended particulate matter in the Tagus estuary during the flood of February 1979. Rec Hidric 2:37–45

    Google Scholar 

  • Vale C, Sundby B (1987) Suspended sediment fluctuations in the Tagus Estuary on semi-diurnal and fortnightly time scales. Estuar Coast Shelf Sci 25:495–508

    Article  Google Scholar 

  • Vale C, Cortesão C, Castro O, Ferreira AM (1993) Suspended-sediment responses to pulses in river flow and semi-diurnal and fortnightly tidal in mesotidal estuary. Mar Chem 43:21–31

    Article  Google Scholar 

  • Valiela I, Teal J, Allen S, van Etten R, Goehringer D, Volkmann S (1985) Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of aboveground organic matter. J Exp Mar Biol Ecol 89:29–54

    Article  Google Scholar 

  • Valiela I, Rutecki D, Fox S (2004) Salt marshes: Biological controls of food webs in a diminishing environment. J Exp Mar Biol Ecol 300:131–159

    Article  Google Scholar 

  • Van Dolah FM (2000) Marine algal toxins: Origins, health effects, and their increased occurrence. Environ Health Persp Suppl 108:S1, March 2000

    Article  Google Scholar 

  • Van Zoest R, Van Eck GTM (1990) Behaviour of particulate polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the Sheldt estuary. Neth J Sea Res 26:89–96

    Article  Google Scholar 

  • Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  Google Scholar 

  • Wilson JO, Buchsbaum R, Valiela I, Swain T (1986) Decomposition in salt marsh ecosystems: Phenolic dynamics during decay of litter of Spartina alterniflora. Mar Ecol Prog Ser 29:177–187

    Article  Google Scholar 

  • Windham L, Weis J, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63–72

    Google Scholar 

  • Xiao ZF, Munthe J, Stromberg D, Lindqvist O (1994) In: Watras CJ, Huckabee JW (eds) Mercury pollution: Integration and synthesis;. Lewis, Boca Raton, FL, pp 581–592

    Google Scholar 

  • Zawislanski P, Chau S, Mountford H, Wong H, Sears T (2001) Accumulation of selenium and trace metals on plant litter in a tidal marsh. Estuar Coast Shelf Sci 52:589–603

    Article  Google Scholar 

  • Zhang H, Lindberg SE (2001) Sunlight and iron(III)-induced photochemical production of ­dissolved gaseous mercury in freshwater. Environ Sci Technol 35:928–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vale, C., Canário, J., Caetano, M., Poissant, L., Ferreira, A.M. (2011). Contaminant Cycling Under Climate Change: Evidences and Scenarios. In: Duarte, P., Santana-Casiano, J. (eds) Oceans and the Atmospheric Carbon Content. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9821-4_7

Download citation

Publish with us

Policies and ethics