Skip to main content

pH Decrease and Effects on the Chemistry of Seawater

  • Chapter
  • First Online:
Oceans and the Atmospheric Carbon Content

Abstract

Variation in seawater pH is just one response to the increased CO2concentration in the atmosphere due to anthropogenic activities. The decrease in pH has a significant effect on the carbonate chemistry of the ocean and causes a decrease in the calcium carbonate saturation state (Ω). Ten years of experimental pH measurements at the ESTOC station show a progressive reduction on pH in the ocean (-0.0017 ± 0.0002 year–1) and its effects on its carbonate chemistry. The calcium carbonate saturation state decreases by 0.018 ± 0.006 unit year–1for calcite and 0.012 ± 0.004 unit year–1for aragonite. The direct consequences of the pH decrease are a decrease in the buffer capacity (-1.99 ± 0.25 µmol kg–1year–1) and an increase in the Revelle factor (0.02 ± 0.002 year–1) of the surface seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brewer PG (1997) Ocean chemistry of the fossil fuel CO2signal: The haline signal of “business as usual”. Geophys Res Lett 24:1367–1369

    Article  Google Scholar 

  • Brix H, Gruber N, Keeling CD (2004), Interannual variability of the upper ocean carbon cycle at station ALOHA near Hawaii, Global Biogeochem Cycles 18:GB4019, doi:10.1029/2004GB002245

    Google Scholar 

  • Broecker WS, Peng TH (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  Google Scholar 

  • Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res I 40:2115–2129

    Article  Google Scholar 

  • Dickson AG (1990) Thermodynamic of the dissociation of Boric acid in synthetic seawater from 273.15 to 298.15 K. Deep Sea Res 37:755–766

    Article  Google Scholar 

  • Dickson AG, Goyet C (eds) (1994) Handbook of methods for the analysis of the various parameters of the carbon-dioxide system in sea water, rep. ORNL/CDIAC-74, US Department of Energy, Washington, DC

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  Google Scholar 

  • Feely et al. (2004) Impact of anthropogenic CO2on the CaCO3system in the oceans. Science 305:362–366

    Article  Google Scholar 

  • Gattuso JP, Frankignoulle M, Borges I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • González-Dávila M, Santana-Casiano JM, Rueda MJ, Llinás O, González-Dávila E (2003) Seasonal and interanual variability of sea-surface carbon dioxide species at the European­ ­station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Global Biochem Cycles 17(3):1076. doi:10.1029/2002GB001993

    Article  Google Scholar 

  • González-Dávila M, Santana-Casiano, González-Dávila E (2007) Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean, Geophys Res Lett 34:L07608. doi:10.1029/2006GL028145

    Article  Google Scholar 

  • Gruber N, Keeling CD, Bates NR (2002) Interannual variability in the North Atlantic Ocean carbon sink, Science 298:2374–2378

    Google Scholar 

  • Haugan P M, Drange H (1996) Effects of CO2on the ocean environment. Energy Convers Mgmt 37:1019–1022

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds.). IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 881

    Google Scholar 

  • Kleypas JA et al. (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robins LL (2006) Impacts on ocean acidification on coral reefs and other marine calcifiers: A guide for future research. Report of a workshop, 2005. NSF, NOA and US Geological Survey, St. Petersburg, FL

    Google Scholar 

  • Langdon C et al. (2003) Effect of elevated CO2on the community metabolism of an experimental coral reef. Global Biogeochem Cycles 17:1011. doi:10.1029/2002GB001941

    Article  Google Scholar 

  • Lewis D, Wallace WR. (1998) CO2System. Program developed for CO2system calculation. Oak Ridge National Laboratory. ORNL/CDIA-105

    Google Scholar 

  • Liu X, Millero FJ (2002) The solubility of Fe(III) in seawater. Mar Chem 77:43–54

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  Google Scholar 

  • Millero FJ (2005) Chemical oceanography, 3rd edn. CRC Press, Florida

    Google Scholar 

  • Millero FJ (2007) The marine inorganic chemistry. Chem Rev 107:308–341

    Article  Google Scholar 

  • Mintrop L, Pérez FF, González-Dávila M, Santana-Casiano JM, Körtzinger A (2000) Alkalinity determination by potentiometry: Intercalibration using three different methods. Cienc Mar 26:23–37

    Google Scholar 

  • Orr JC et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Pankow FJ (1991) Aquatic chemistry concepts. Lewis, Chelsea, MI

    Google Scholar 

  • Petit JR et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Raven J et al. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, UK

    Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between the atmosphere and ocean and the question of an increase of atmospheric CO2during the past decades. Tellus 9:18–27

    Article  Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315

    Article  Google Scholar 

  • Riebesell U et al. (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Sabine CL et al. (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Google Scholar 

  • Santana-Casiano J M, González-Davila M, Millero FJ (2006) The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar Chem 99:70–82

    Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Rueda MJ, Llinás O, González-Dávila EF (2007) Inter-annual variability of oceanic CO2parameters in the North East Atlantic subtropical gyre at the ESTOC site. Global Biogeochem Cycles 21:GB1015. doi:10.1029/2006GB002788

    Article  Google Scholar 

  • Skirrow G (1975) Chemical oceanography vol II. Riley P, Skirrow G (eds). Academic, London

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Urban-Rich J, Daga M, Peterson J (2001) Copepod grazing on phytoplankton in the Pacific sector of the Antarctic Polar Front. Deep Sea Res II 48:4223–4246

    Google Scholar 

  • Zhang J-Z (2001) The use of pH and buffer intensity to quantify the carbon cycle in the ocean. Mar Chem 70:121–131

    Article  Google Scholar 

  • Zondervan I, Zeebe R, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochem Cycles 15:507–516

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Commission, through the MAST III program, the CANIGO project (MAS3-CT96-0060), by the Ministerio de Ciencia y Tecnología, Proyecto FLUCAN (2002-01548) and by the European Project CARBOOCEAN 2005–2009, CN 511176-2. The authors thank all the participants in the ESTOC work during these 10 years, in special Dr. O. Llinás and M.J. Rueda from the ICCM-Gobierno de Canarias in charge of keeping the station work, Dr. E.F. González-Dávila for the statistical data treatment and the SeaS Canarias-Departamento de Biología ULPGC-Viceconsejería de Pesca (G.A.C) by to provide us the AVHRR image in Fig. 5.1. We thank Frank J. Millero for his helpful discussion and comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana Magdalena Santana-Casiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Santana-Casiano, J.M., González-Dávila, M. (2011). pH Decrease and Effects on the Chemistry of Seawater. In: Duarte, P., Santana-Casiano, J. (eds) Oceans and the Atmospheric Carbon Content. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9821-4_5

Download citation

Publish with us

Policies and ethics