Skip to main content

Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

  • Conference paper
  • First Online:
Book cover Boron Rich Solids

Abstract

Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holcombe CE, Smith DD, Lore JD, Duerksen WK, Carpenter DA (1973) Physical-Chemical Properties Of Beta-Rhombohedral Boron. High Temp Sci 5:349–357

    Google Scholar 

  2. Werheit H (1998) Numerical Data and Fundamental Relationships in Science and Technology, edited by Madelung O, Vol Group III 41C. Landolt-Bornstein, Springer, Berlin.

    Google Scholar 

  3. Haasen P (1983) Physical Metallurgy, edited by Cahn RW and Haasen P. North-Holland Physics, Amsterdam

    Google Scholar 

  4. Cynn H, Klepeis JE, Yoo CS, Young DA (2002) Osmium has the lowest experimentally determined compressibility. Phys Rev Lett 88:135701

    Article  ADS  Google Scholar 

  5. Holleck H (1986) Material selection for hard coatings. J Vac Sci Technol A 4:2661–2669

    Article  ADS  Google Scholar 

  6. Stuparevic L, Živković D (2004) Phase diagram investigation and thermodynamic study of Os-B system. J Therm Analys Calor 76:975–983

    Article  Google Scholar 

  7. Hebbache M, Stuparevic L, Živković D (2006) A new superhard material : Osmium diboride OsB2. Solid State Comm 139:227–231

    Article  ADS  Google Scholar 

  8. Kohn W, Sham LJ (1965) Self-Consistent equations including exchange and correlation effects. Phys Rev 140 A:1133–1138

    Article  MathSciNet  ADS  Google Scholar 

  9. Blaha P, Schwarz S, Madsen GKH, Kvasnicka D, Luitz J (2001) Computer Code WIEN2k. VUT, Vienna

    Google Scholar 

  10. Aronsson B (1963) The crystal structure of RuB2, OsB2, and IrB1.35 and some general comments on the crystal chemistry of borides in the composition range MeB-MeB3. Acta Chem Scand 17:2036–2050

    Article  Google Scholar 

  11. Kaner RB, Gilman JJ (2002) US Patent UCLA No. 2002-244; Kaner RB, Gilman JJ, Tolbert SH (2005) Designing Superhard Materials. Science 308:1268–1269

    Article  Google Scholar 

  12. Grimsditch M, Zouboulis ES, Polian A (1994) Elastic constants of boron nitride. J Appl Phys 76:832–834

    Article  ADS  Google Scholar 

  13. Grimsditch M, Ramdas AK (1975) Brillouin scattering in diamond. Phys Rev B 11:3139–3148

    Article  ADS  Google Scholar 

  14. Hebbache (2009) The Fermi surface of a superconductor : OsB2. Phys Stat Sol (RRL) 3 :163–165

    Article  Google Scholar 

  15. M. Hebbache M (2000) Shear modulus and hardness of crystals: Density-functional calculations. Solid State Commun 113:427–432

    Article  ADS  Google Scholar 

  16. Donohue J (1974) The Structures of The Elements. Krieger Publishing Compagny, Florida

    Google Scholar 

  17. Carlsson JO, Lundstrom T (1970) The Solution hardening of ?-Rhombohedral boron, J Less Common Met 22:317–320

    Article  Google Scholar 

  18. Brodhag, C, Thevenot F, Viala JC (1978) Hardness Study Of β-Rhombohedral Boron. Ann Chim Fr 3:23–26; Thevenot F, Viala JC (1979) Obtention de bore pur sous forme massive ou en couches minces. Caractérisation physique du bore. Les couches minces 195:35–45 (in french); Golikova OA, Amandzhanov N, Kazanin MM, Klimashin GM, Kutasov VV (1990) Electrical activity of impurities in ?-Rhombohedral boron. Phys Stat Sol a, 121:579–586

    Google Scholar 

  19. King HW (1966) Quantitative size-factors for metallic solid solutions. J Mater Sci 1:79–90; King HW (1971) Quantitative size-factors for interstitial solid solutions. J. Mater Sci 6:1157–1167

    Article  ADS  Google Scholar 

  20. Hebbache M (2009). The search for superhard materials : doped boron. Euro Phys Lett 87:16001

    Article  ADS  Google Scholar 

  21. Gao M, He JL, Wu ED, Liu SM, Yu DL, Li DC, Zhang SY, Tian YJ (2003) Hardness of covalent crystals. Phys Rev Lett 91:015502

    Article  ADS  Google Scholar 

  22. Callmer B (1977) An accurate refinement of the ?-rhombohedral boron structure. Acta Crystallogr B33:1951–1954

    Google Scholar 

  23. He J, Wu E, Wang H, Liu R, Tian Y (2005) Ionicities of boron-boron bonds in B12 icosahedra. Phys Rev Lett 94:015504

    Article  ADS  Google Scholar 

  24. Levine BF (1973) Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys., 59:1463–1486

    Article  ADS  Google Scholar 

  25. Šimunek A, Vackár J (2006) Hardness of covalent and ionic crystals: first-principle calculations. Phys Rev Lett 96:085501

    Article  ADS  Google Scholar 

  26. Gilman JJ (1974) Theory of solution strengthening of alkali halide crystals. J Appl Phys 45:508–509

    Article  ADS  Google Scholar 

  27. Garbauskas MF, Kasper JS, Slack GA (1986). The incorporation of vanadium in β-rhombohedral boron as determined by single-crystal diffractometry. J Solid State Chem 63:424–430

    Article  ADS  Google Scholar 

  28. Lundstrom T, Tergenius LE (1984) A single-crystal investigation of the solid solution NiB48.5 of β-rhombohedral boron type structure. Z. Kristallogr., 167:235–246

    Article  Google Scholar 

  29. Callmer B, Lundstrom T (1976) A single-crystal diffractometry investigation of iron in β-rhombohedral boron. J Solid State Chem 17:165–170

    Article  ADS  Google Scholar 

  30. Andersson S, Lundstrom T (1970) The solubility of chromium in β-rhombohedral boron as determined in CrB41 by single-crystal diffractometry. J Solid State Chem 2:603–611

    Article  ADS  Google Scholar 

  31. Higashi I, Iwasaki H (1989) Single-crystal X-ray diffraction study of AlB31 of the β-rhombohedral boron structure. Solid State Chem 82:230–238

    Article  ADS  Google Scholar 

  32. Andersson S, Callmer B (1974) The solubilities of copper and manganese in β-rhombohedral boron as determined in CuB28 and MnB23 by single-crystal diffractometry. J Solid State Chem 10:219–230

    Article  ADS  Google Scholar 

  33. Callmer B (1978) A single-crystal diffractometry investigation of scandium in β-rhombohedral boron. J Solid State Chem 23:391–398

    Article  ADS  Google Scholar 

  34. Brutti S, Colapietro M, Balducci G, Barba L, Manfrineti P, Palenzona A (2002) Synchrotron powder diffraction Rietveld refinement of MgB20 crystal structure. Intermetallics 1:811–817

    Article  Google Scholar 

  35. Kobayashi M, Higashi I, Matsuda H, Kimura K (1995) Rietveld analysis of LiB13 with β-rhombohedral boron structure. J Alloys Comp 221:120–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hebbache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Hebbache, M., Živković, D. (2010). Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron. In: Orlovskaya, N., Lugovy, M. (eds) Boron Rich Solids. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9818-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9818-4_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9817-7

  • Online ISBN: 978-90-481-9818-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics