Skip to main content

All Ceramic Cantilever Sensors with Boron Carbide Layer: Advantages and Dimensional Limitations

  • Conference paper
  • First Online:
Book cover Boron Rich Solids

Abstract

A model that predicts minimal length and thickness of all ceramic two layer cantilever sensors for chemical and biological detection is proposed. The model allows the estimation of minimal length and thickness where the conditions for the safe cantilever operation are satisfied. Two materials have been chosen for the consideration of the piezoelectric and non-piezoelectric layers in the layered cantilever. A piezoelectric material is lead zirconate titanate and a non-piezoelectric material is boron carbide. Different conditions, such as von Mises criterion and Mohr’s strength theory are considered to find safe stress level in the clamped cross section of the cantilever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-J. Butt, P. Siedle, K. Seifert, T. Seeger, K. Fendler, E. Bamberg, K. Goldie, and A. Engel, Scan Speed Limit in Atomic Force Microscopy, Journal of Microscopy, vol. 169, pp. 75–84, 1993.

    Google Scholar 

  2. P.I. Oden, Gravimetric Sensing of Metallic Deposits Using an End-Loaded Microfabricated Beam Structure, Sensors and Actuators B, vol. 53, pp. 191–196, 1998.

    Article  Google Scholar 

  3. W.Y. Shih, X. Li, H. Gu, W.H. Shih, and I.A. Aksay, Simultaneous Liquid Viscosity and Density Determination with Piezoelectric Unimorph Cantilevers, Journal of Applied Physics, vol. 89, pp. 1497–1505, 2001.

    Article  ADS  Google Scholar 

  4. J.W. Yi, W.Y. Shih, R. Mutharasan, and W.-H. Shih, In Situ Cell Detection Using Piezoelectric Lead Zirconate Titanate – Stainless Steel Cantilevers, Journal of Applied Physics, vol. 93, pp. 619–625, 2003.

    Article  ADS  Google Scholar 

  5. J.W. Yi, W.Y. Shih, and W.-H. Shih, Effect of Length, Width, and Mode on the Mass Detection Sensitivity of Piezoelectric Unimorph Cantilevers, Journal of Applied Physics, vol. 91, pp. 1680–1686, 2002.

    Article  ADS  Google Scholar 

  6. B. Ilic, D. Czaplewsli, H.G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, Mechanical Resonant Immunospecific Biological Detector, Applied Physics Letters, vol. 77, pp. 450–452, 2000.

    Article  ADS  Google Scholar 

  7. T. Thundat, E.A. Wachter, S.L. Sharp, and R.J. Warmack, Detection of Mercury Vapor Using Resonating Microcantilevers, Applied Physics Letters, vol. 66, pp. 1695–1697, 1995.

    Article  ADS  Google Scholar 

  8. N. Orlovskaya, M. Lugovy, V. Subbotin, O. Radchenko, J. Adams, M. Chheda, J. Shih, J. Sankar, and S. Yarmolenko, Robust Design and Manufacturing of Ceramic Laminates with Controlled Thermal Residual Stresses for Enhanced Toughness, Journal of Materials Science, vol. 40, pp. 5483–5490, 2005.

    Article  ADS  Google Scholar 

  9. G. de With, High Temperature Fracture of Boron Carbide: Experiments and Simple Theoretical Models, Journal of Materials Science, vol. 19, pp. 457–466, 1984.

    Article  ADS  Google Scholar 

  10. H.J. Xiang, and Z.F. Shi, Static Analysis for Multi-Layered Piezoelectric Cantilevers, International Journal of Solids and Structures, vol. 45, pp. 113–128, 2008.

    Article  MATH  Google Scholar 

  11. S. Timoshenko, Strength of Materials, 3rd ed, Krieger Publishing Company, 1976.

    Google Scholar 

  12. S.C. Hwang, and R.M. McMeeking, A Finite Element Model of Ferroelastic Polycrystals, International Journal of Solids and Structures, vol. 36, pp. 1541–1556, 1999.

    Article  MATH  Google Scholar 

  13. A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1, McGraw-Hill, New York, 1950.

    Google Scholar 

  14. S.P. Timoshenko, and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  15. Z. Shen, W.Y. Shih, and W.-H. Shih, Self-Exciting, Self-Sensing PbZr0.53Ti0.47O3/SiO2 Piezoelectric Microcantilevers with Femtogram/Hertz Sensitivity, Applied Physics Letters, vol. 89, 023506, 2006.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Lugovy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lugovy, M. (2010). All Ceramic Cantilever Sensors with Boron Carbide Layer: Advantages and Dimensional Limitations. In: Orlovskaya, N., Lugovy, M. (eds) Boron Rich Solids. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9818-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9818-4_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9817-7

  • Online ISBN: 978-90-481-9818-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics