Skip to main content

Intact Cell/Spore Mass Spectrometry of Fusarium Macro Conidia for Fast Isolate and Species Differentiation

  • Conference paper
  • First Online:
Detection of Biological Agents for the Prevention of Bioterrorism

Abstract

The focus of this paper is the development of an approach called intact cell mass spectrometry (ICMS) or intact spore mass spectrometry (ISMS) based on the technique matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the rapid differentiation and identification of Fusarium species. Several parameters, which are known to affect the quality of IC mass spectra, have been investigated in detail by varying the MALDI matrix as well as the solvent system, in which the matrix has been dissolved, the solvent system for sample purification and the type of sample/MALDI matrix deposition technique. In the end characteristic as well as highly reproducible IC or IS mass spectra or peptide/protein fingerprints of three Fusarium species (F. cerealis, F. graminearum and F. poae) including 16 Fusarium isolates derived from different hosts and geographical locations have been obtained. Unscaled hierarchical cluster analysis based on ICMS data of eight selected Fusarium isolates of two species F. graminearum and F. poae revealed significant difference among the peptide/protein pattern of them. The results of the applied cluster analysis proved that, ICMS is a powerful approach for the rapid differentiation of Fusarium species. In addition, an on-target tryptic digestion was applied to Fusarium macro conidia spores to identify proteins using MALDI post source decay (PSD) fragment ion analysis. Two kinds of trypsin, namely bead-immobilized − to favor cleavage of surface-associated proteins − and non-immobilized trypsin were applied and compared. The results showed that the latter is more suitable for generating sequence tags by PSD fragment ion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10(10):1227–1232

    Article  CAS  Google Scholar 

  2. Chen HY, Chen YC (2005) Characterization of intact Penicillium spores by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19(23):3564–3568

    Article  CAS  Google Scholar 

  3. Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67(4):539–548

    Article  CAS  Google Scholar 

  4. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171

    Article  CAS  Google Scholar 

  5. Lasch P, Nattermann H, Erhard M, Stämmler M, Grunow R, Bannert N, Appel B, Naumann D (2008) MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal Chem 80(6):2026–2034

    Article  CAS  Google Scholar 

  6. Arnold RJ, Reilly JP (1998) Fingerprint matching of E.coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correction approach. Rapid Commun Mass Spectrom 12(10):630–636

    Article  CAS  Google Scholar 

  7. Nilsson CL (1999) Fingerprinting of Helicobacter pylori strains by matrix-assisted laser desroption/ionization mass spectrometric analysis. Rapid Commun Mass Spectrom 13(11):1067–1071

    Article  CAS  Google Scholar 

  8. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ (2005) Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 62(3):273–284

    Article  CAS  Google Scholar 

  9. Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 66(3):399–409

    Article  CAS  Google Scholar 

  10. Jarman KH, Daly DS, Petersen CE, Saezn AJ, Valentine NB, Wahl KL (1999) Extracting and visualizing matrix-assisted laser desorption/ionization time-of-flight mass spectral fingerprints. Rapid Commun Mass Spectrom 13(15):1586–1594

    Article  CAS  Google Scholar 

  11. Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72(6):1217–1223

    Article  CAS  Google Scholar 

  12. Vanlaere E, Sergeant K, Dawyndt P, Kallow W, Erhard M, Sutton H, Dare D, Devreese B, Samyn B, Vandamme P (2008) Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Brukholderia cepacia complex. J Microbiol Methods 75(2):279–286

    Article  CAS  Google Scholar 

  13. Hettick JM, Green BJ, Buskirk AD, Kashon ML, Slaven JE, Janotka E, Blachere FM, Schmechel D, Beezhold DH (2008) Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem 380(2):276–281

    Article  CAS  Google Scholar 

  14. Wang Z, Russon L, Li L, Roser DC, Long SR (1998) Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12(8):456–464

    Article  CAS  Google Scholar 

  15. Evason DJ, Claydon MA, Gordon DB (2000) Effects of ion mode and matrix additives in the identification of bacteria by intact cell mass spectrometry. Rapid Commun Mass Spectrom 14(8):669–672

    Article  CAS  Google Scholar 

  16. Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73(4):746–750

    Article  CAS  Google Scholar 

  17. Hathout Y, Demirev PA, Ho YP, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J, Fenselau C (1999) Identification of Bacillus spores by matrix-assisted laser desorption ionization – mass specttometry. Appl Environ Microbiol 65(10):4313–4319

    CAS  Google Scholar 

  18. Ryzhov V, Hathout Y, Fenselau C (2000) Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Appl Environ Microbiol 66(9):3828–3834

    Article  CAS  Google Scholar 

  19. Ullom JN, Frank M, Gard EE, Horn JM, Labov SE, Langry K, Magnotta F, Stanion KA, Hack CA, Benner WH (2001) Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization. Anal Chem 73(10):2331–2337

    Article  CAS  Google Scholar 

  20. Valentine NB, Wahl JH, Kingsely MT, Wahl KL (2002) Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 16(14):1352–1357

    Article  CAS  Google Scholar 

  21. Amiri-Eliasi B, Fenselau C (2001) Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal Chem 73(21):5228–5231

    Article  CAS  Google Scholar 

  22. Welham KJ, Domin MA, Johnson K, Jones L, Ashton DS (2000) Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14(5):307–310

    Article  CAS  Google Scholar 

  23. Li TY, Liu BH, Chen YC (2000) Characterization of Aspergillus spores by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14(24):2393–2400

    Article  CAS  Google Scholar 

  24. Dong H, Kemptner J, Marchetti-Deschmann M, Kubicek CP, Allmaier G (2009) Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Anal Bioanal Chem 359(5):1373–1383

    Article  Google Scholar 

  25. Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G (2009) Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23(6):877–884

    Article  CAS  Google Scholar 

  26. Kemptner J, Marchetti-Deschmann M, Kubicek CP, Allmaier G (2009) Mixed volume sample preparation method for intact cell mass spectrometry of Fusarium spores. J Mass Spectrom 44(11):1622–1624

    Article  CAS  Google Scholar 

  27. Burnett J (2003) Populations and species. Oxford University Press, New York

    Google Scholar 

  28. Kavanagh K (2005) Fungi – biology and applications. Wiley, Chichester, UK

    Book  Google Scholar 

  29. Phalip V, Delalande F, Carapito C, Goubet F, Hatsh D, Leize-Wagner E, Dupree P, Dorsselaer AV, Jeltsch JM (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48(6):366–379

    Article  CAS  Google Scholar 

  30. Varga M, Bartók T, Mesterházy Á (2006) Determination of ergosterol in Fusarium-infected wheat by liquid chromatography-atmospheric pressure photoionization mass spectrometry. J Chromatogr A 1103(2):278–283

    Article  CAS  Google Scholar 

  31. Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gené J, Symoens F, Datry A, Guarro J, Mazier D, Hennequin C (2009) Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect 15(7):634–642

    Article  CAS  Google Scholar 

  32. Malz S, Grell MN, Thrane C, Maier FJ, Rosager P, Felk A, Albertsen KS, Salomon S, Bohn L, Schäfer W, Giese H (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42(5):420–433

    Article  CAS  Google Scholar 

  33. Bhardwaj S, Shukla A, Mukherjee S, Sharma S, Guptasarma P, Chakraborti AK, Chakrabarti A (2007) Putative structure and characteristics of a red water-soluble pigment secreted by Penicillium marneffei. Med Mycol 45(5):419–427

    Article  CAS  Google Scholar 

  34. Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41(5):503–507

    Article  CAS  Google Scholar 

  35. Warscheid B, Jackson K, Sutton C, Fenselau C (2003) MALDI analysis of Bacilli in spore mixtures by applying a quadrupole ion trap time-of-flight tandem mass spectrometry. Anal Chem 75(20):5608–5617

    Article  CAS  Google Scholar 

  36. Warscheid B, Fenselau C (2003) Characterization of Bacillus spore species and their mixtures using postsource decay with a curved-field reflectron. Anal Chem 75(20):5618–5627

    Article  CAS  Google Scholar 

  37. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466

    Article  CAS  Google Scholar 

  38. Strohalm M, Hassman M, Kosata B, Kodicek M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22(6):905–908

    Article  Google Scholar 

  39. Madonna AJ, Basile F, Ferrer I, Meetani MA, Rees JC, Voorhees KJ (2000) On-probe sample pretreatment for the detection of proteins above 15 kDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14(23):2220–2229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The investigation was supported financially in part by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (grant number 100053). Furthermore the authors thank Christian P. Kubicek (Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria) for the supply of macro conidia spores during all the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenter Allmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dong, H., Marchetti-Deschmann, M., Winkler, W., Lohninger, H., Allmaier, G. (2011). Intact Cell/Spore Mass Spectrometry of Fusarium Macro Conidia for Fast Isolate and Species Differentiation. In: Banoub, J. (eds) Detection of Biological Agents for the Prevention of Bioterrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9815-3_4

Download citation

Publish with us

Policies and ethics