Skip to main content

Imaging Mass Spectrometry

  • Conference paper
  • First Online:
Detection of Biological Agents for the Prevention of Bioterrorism

Abstract

Imaging Mass Spectrometry (IMS) is a powerful analytical technology that provides both molecular and spatial information from a single sample. This chapter provides a brief history of Imaging Mass Spectrometry, including early work with secondary ion mass spectrometry (SIMS) and laser desorption/ionization (LDI) techniques. A more in-depth account of recent applications utilizing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for high-molecular weight imaging is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castaing R, Slodzian G (1962) Microanalysis by secondary ionic emission. J Microsc 1:395–410

    CAS  Google Scholar 

  2. Liebl H (1967) Ion microprobe mass analyzer. J Appl Phys 38:5277–5283

    Article  CAS  Google Scholar 

  3. Pacholski ML, Winograd N (1999) Imaging with mass spectrometry. Chem Rev 99:2977–3006

    Article  CAS  Google Scholar 

  4. Colliver TL et al (1997) Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal Chem 69:2225–2231

    Article  CAS  Google Scholar 

  5. Arlinghaus HF (2008) Possibilities and limitations of high-resolution mass spectrometry in life sciences. Appl Surf Sci 255:1058–1063

    Article  CAS  Google Scholar 

  6. Chandra S, Lorey ID, Smith DR (2002) Quantitative subcellular secondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells. Radiat Res 157:700–710

    Article  CAS  Google Scholar 

  7. Lechene C et al (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20

    Article  Google Scholar 

  8. Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–1566

    Article  CAS  Google Scholar 

  9. Hallegot P, Peteranderl R, Lechene C (2004) In-situ imaging mass spectrometry analysis of melanin granules in the human hair shaft. J Invest Dermatol 122:381–386

    Article  CAS  Google Scholar 

  10. Kleinfeld AM, Kampf JP, Lechene C (2004) Transport of 13C-oleate in adipocytes measured using multi imaging mass spectrometry. J Am Soc Mass Spectrom 15:1572–1580

    Article  CAS  Google Scholar 

  11. Fragu P, Kahn E (1997) Secondary ion mass spectrometry (SIMS) microscopy: a new tool for pharmacological studies in humans. Microsc Res Tech 36:296–300

    Article  CAS  Google Scholar 

  12. Winograd N (2003) Prospects for imaging TOF-SIMS: from fundamentals to biotechnology. Appl Surface Sci 203–204:13–19

    Article  Google Scholar 

  13. Magnusson Y et al (2008) Lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source. Clin Physiol Funct Imaging 28:202–209

    Article  CAS  Google Scholar 

  14. Pacholski ML, Cannon DM Jr, Ewing AG, Winograd N (1998) Static time-of-flight secondary ion mass spectrometry imaging of freeze-fractured, Frozen-hydrated biological membranes. Rapid Commun Mass Spectrom 12:1232–1235

    Article  CAS  Google Scholar 

  15. McCandlish CA, McMahon JM, Todd PJ (2000) Secondary ion images of the rodent brain. J Am Soc Mass Spectrom 11:191–199

    Article  CAS  Google Scholar 

  16. Eijkel GB et al (2009) Correlating MALDI and SIMS imaging mass spectrometric datasets of biological tissue surfaces. Surf Interface Anal 41:675–685

    Article  CAS  Google Scholar 

  17. Sjovall P, Lausmaa J, Johansson B (2004) Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76:4271–4278

    Article  CAS  Google Scholar 

  18. Touboul D et al (2004) Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem 76:1550–1559

    Article  CAS  Google Scholar 

  19. Todd PJ, Schaaff TG, Chaurand P, Caprioli RM (2001) Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 36:355–369

    Article  CAS  Google Scholar 

  20. Wong SCC et al (2003) Development of a C +60 ion gun for static SIMS and chemical imaging. Appl Surface Sci 203–204:219–222

    Article  Google Scholar 

  21. Debois D, Bralet M-P, Le Naour F, Brunelle A, Laprevote O (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81:2823–2831

    Article  CAS  Google Scholar 

  22. Nicola AJ, Muddiman DC, Hercules DM (1996) Enhancement of ion intensity in time-of-flight secondary-ionization mass spectrometry. J Am Soc Mass Spectrom 7:467–472

    Article  CAS  Google Scholar 

  23. McDonnell LA et al (2005) Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom 40:160–168

    Article  CAS  Google Scholar 

  24. Nygren H, Malmberg P, Kriegeskotte C, Arlinghaus HF (2004) Bioimaging TOF-SIMS: localization of cholesterol in rat kidney sections. FEBS Lett 566:291–293

    Article  CAS  Google Scholar 

  25. Wu KJ, Odom RW (1996) Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal Chem 68:873–882

    Article  CAS  Google Scholar 

  26. Carado A et al (2008) C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal Chem 80:7921–7929

    Article  CAS  Google Scholar 

  27. Van Vaeck L, Struyf H, Van Wim R, Fred A (1994) Organic and inorganic analysis with laser microprobe mass spectrometry. Part I: Instrumentation and methodology. Mass Spectrom Rev 13:189–208

    Article  CAS  Google Scholar 

  28. Denoyer E, Van Grieken R, Adams F, Natusch DFS (1982) Laser microprobe mass spectrometry. 1. Basic principles and performance characteristics. Anal Chem 54:26A–41A

    Article  CAS  Google Scholar 

  29. Li Y, Shrestha B, Vertes A (2008) Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal Chem 80:407–420

    Article  CAS  Google Scholar 

  30. Bradshaw JA, Ovchinnikova OS, Meyer KA, Goeringer DE (2009) Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy. Rapid Commun Mass Spectrom 23:3781–3786

    Article  CAS  Google Scholar 

  31. Hercules DM, Day RJ, Balasanmugam K, Dang TA, Li CP (1982) Laser microprobe mass spectrometry. 2. Applications to structural analysis. Anal Chem 54:280A–305A

    Article  CAS  Google Scholar 

  32. Wechsung R et al (1978) LAMMA – a new laser-microprobe-mass-analyzer. Microsc Acta Suppl 2:281–296

    CAS  Google Scholar 

  33. Wilk ZA, Hercules DM (1987) Organic and elemental ion mapping using laser mass spectrometry. Anal Chem 59:1819–1825

    Article  CAS  Google Scholar 

  34. Karas M et al (1990) Principles and applications of matrix-assisted UV-laser desorption/ionization mass spectrometry. Anal Chim Acta 241:175–185

    Article  CAS  Google Scholar 

  35. Thiery G et al (2007) Multiplex target protein imaging in tissue sections by mass spectrometry–TAMSIM. Rapid Commun Mass Spectrom 21:823–829

    Article  CAS  Google Scholar 

  36. Savina MR, Lykke KR (1997) Chemical imaging of surfaces with laser desorption mass spectrometry. TrAC, Trends Anal Chem 16:242–252

    Article  CAS  Google Scholar 

  37. McKay DS et al (1996) Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  CAS  Google Scholar 

  38. Kovalenko LJ et al (1992) Microscopic organic analysis using two-step laser mass spectrometry: application to meteoritic acid residues. Anal Chem 64:682–690

    Article  CAS  Google Scholar 

  39. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  CAS  Google Scholar 

  40. Zoriy MV, Dehnhardt M, Reifenberger G, Zilles K, Becker JS (2006) Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257:27–33

    Article  CAS  Google Scholar 

  41. Hare D et al (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics 1:53–58

    Article  CAS  Google Scholar 

  42. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68

    Article  CAS  Google Scholar 

  43. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  44. Tanaka K et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  45. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  CAS  Google Scholar 

  46. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  47. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  48. Stoeckli M, Farmer TB, Caprioli RM (1999) Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom 10:67–71

    Article  CAS  Google Scholar 

  49. Chaurand P, Stoeckli M, Caprioli RM (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 71:5263–5270

    Article  CAS  Google Scholar 

  50. Chaurand P et al (2004) Integrating histology and imaging mass spectrometry. Anal Chem 76:1145–1155

    Article  CAS  Google Scholar 

  51. Aerni H-R, Cornett DS, Caprioli RM (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834

    Article  CAS  Google Scholar 

  52. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7:493–496

    Article  CAS  Google Scholar 

  53. Masumori N et al (2001) A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61:2239–2249

    CAS  Google Scholar 

  54. Chaurand P, DaGue BB, Pearsall RS, Threadgill DW, Caprioli RM (2001) Profiling proteins from azoxymethane-induced colon tumors at the molecular level by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 1:1320–1326

    Article  CAS  Google Scholar 

  55. Yanagisawa K et al (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362:433–439

    Article  CAS  Google Scholar 

  56. Amann JM et al (2006) Selective profiling of proteins in lung cancer cells from fine-needle aspirates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Cancer Res 12:5142–5150

    Article  CAS  Google Scholar 

  57. Taguchi F et al (2007) Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst 99:838–846

    Article  CAS  Google Scholar 

  58. Yildiz PB et al (2007) Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer. J Thorac Oncol 2:893–901

    Article  Google Scholar 

  59. Schwartz SA, Weil RJ, Johnson MD, Toms SA, Caprioli RM (2004) Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin Cancer Res 10:981–987

    Article  CAS  Google Scholar 

  60. Schwartz SA et al (2005) Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 65:7674–7681

    CAS  Google Scholar 

  61. Cornett DS et al (2006) A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 5:1975–1983

    Article  CAS  Google Scholar 

  62. Palmer-Toy DE, Sarracino DA, Sgroi D, LeVangie R, Leopold PE (2000) Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem 46:1513–1516

    CAS  Google Scholar 

  63. Xu BJ, Caprioli RM, Sanders ME, Jensen RA (2002) Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom 13:1292–1297

    Article  CAS  Google Scholar 

  64. Sanders ME et al (2008) Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS. J Proteome Res 7:1500–1507

    Article  CAS  Google Scholar 

  65. Xu BJ et al (2009) Identification of early intestinal neoplasia protein biomarkers using laser capture microdissection and MALDI MS. Mol Cell Proteomics 8:936–945

    Article  CAS  Google Scholar 

  66. Li L, Garden RW, Sweedler JV (2000) Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol 18:151–160

    Article  CAS  Google Scholar 

  67. Rubakhin SS, Garden RW, Fuller RR, Sweedler JV (2000) Measuring the peptides in individual organelles with mass spectrometry. Nat Biotechnol 18:172–175

    Article  CAS  Google Scholar 

  68. Monroe EB et al (2006) Massively parallel sample preparation for the MALDI MS analyses of tissues. Anal Chem 78:6826–6832

    Article  CAS  Google Scholar 

  69. Zimmerman TA, Monroe EB, Sweedler JV (2008) Adapting the stretched sample method from tissue profiling to imaging. Proteomics 8:3809–3815

    Article  CAS  Google Scholar 

  70. Skold K et al (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res 5:262–269

    Article  CAS  Google Scholar 

  71. Nilsson A et al (2007) Increased striatal mRNA and protein levels of the immunophilin FKBP-12 in experimental Parkinson’s disease and identification of FKBP-12-binding proteins. J Proteome Res 6:3952–3961

    Article  CAS  Google Scholar 

  72. Pierson J et al (2004) Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3:289–295

    Article  CAS  Google Scholar 

  73. Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5:101–108

    Article  CAS  Google Scholar 

  74. Laurent C et al (2005) Direct profiling of the cerebellum by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a methodological study in postnatal and adult mouse. J Neurosci Res 81:613–621

    Article  CAS  Google Scholar 

  75. Burnum KE et al (2008) Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 149:3274–3278

    Article  CAS  Google Scholar 

  76. Burnum KE et al (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50:2290–2298

    Article  CAS  Google Scholar 

  77. Chaurand P et al (2008) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423

    CAS  Google Scholar 

  78. Chaurand P et al (2003) Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics 3:2221–2239

    Article  CAS  Google Scholar 

  79. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Meth 4:828–833

    Article  CAS  Google Scholar 

  80. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708

    Article  CAS  Google Scholar 

  81. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19:1069–1077

    Article  CAS  Google Scholar 

  82. Chaurand P, Caprioli RM (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23:3125–3135

    Article  CAS  Google Scholar 

  83. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456

    Article  CAS  Google Scholar 

  84. Crecelius AC et al (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16:1093–1099

    Article  CAS  Google Scholar 

  85. Sinha TK et al (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5:57–59

    Article  CAS  Google Scholar 

  86. McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42:1099–1105

    Article  CAS  Google Scholar 

  87. Cornett DS, Frappier SL, Caprioli RM (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653

    Article  CAS  Google Scholar 

  88. Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42:254–262

    Article  CAS  Google Scholar 

  89. Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724

    Article  CAS  Google Scholar 

  90. Aerni HR, Cornett DS, Caprioli RM (2009) High-throughput profiling of formalin-fixed paraffin-embedded tissue using parallel electrophoresis and matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 81:7490–7495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Reyzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Reyzer, M.L., Caprioli, R.M. (2011). Imaging Mass Spectrometry. In: Banoub, J. (eds) Detection of Biological Agents for the Prevention of Bioterrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9815-3_17

Download citation

Publish with us

Policies and ethics