Skip to main content

An Incremental Strategy for Modeling Laminate Microstructures in Finite Plasticity – Energy Reduction, Laminate Orientation and Cyclic Behavior

  • Chapter
  • First Online:
Multiscale Methods in Computational Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 55))

Abstract

The plastic deformation of crystalline solids often gives rise to complex microstructural patterns, which can be observed experimentally and which have been reasoned to form as minimizers of non-quasiconvex energy potentials. We model the time-continuous evolution of laminate microstructures in finite-strain elastoplasticity via incrementally solving the stationarityconditions of the underlying minimum principles, replacing the nonconvex potentials by relaxed forms that account for laminate microstructures of first order. Here, we apply a timeincremental approach to investigate the orientation of the forming laminates dependent on the active slip system orientation. We present results for monotonic as well as cyclic stress-strain behavior. Moreover, we compare results from the present approach to those obtained by the well-established method using the so-called condensed energy for monotonic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hackl, K. and Fischer, F.D., On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation. Proc. Roy. Soc. London A, 464:117–132, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  2. Carstensen, C., Hackl, K., and Mielke, A., Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. London A, 458:299–317, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ortiz, M. and Repetto, E.A. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47:397–462, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ericksen, J.L., Equilibrium of bars. J. Elasticity, 5:191–201, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  5. Ball, J.M. and James, R.D., Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal., 100:13–52, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  6. Govindjee, S., Mielke, A., and Hall, G.J., The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids, 51:1–26, 2003.

    Article  Google Scholar 

  7. Bartels, S., Carstensen, C., Hackl, K., and Hoppe, U., Effective relaxation for microstructure simulation: algorithms and applications. Comp. Meth. Appl. Meth. Eng., 193:5143–5175, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  8. Conti, S. and Theil, F., Single-slip elastoplastic microstructures. Arch. Rat. Mech. Anal., 178:125–148, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. Lambrecht, M., Miehe, C., and Dettmar, J., Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Solids Struct., 40:1369–1391, 2003.

    Article  MATH  Google Scholar 

  10. Mielke, A., Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comp. Meth. Appl. Meth. Eng., 193:5095–5127, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  11. Conti, S. and Ortiz, M., Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids, 56:1885–1904, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  12. Mielke, A. and Ortiz, M., A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var., 14:494–516, 2007.

    Article  MathSciNet  Google Scholar 

  13. Hackl, K. and Kochmann, D.M., Relaxed potentials and evolution equations for inelastic microstructures. In: B. Daya Reddy (Ed.), IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. Springer, Dordrecht, pp. 27–39, 2008.

    Chapter  Google Scholar 

  14. Kochmann, D.M. and Hackl, K., Time-continuous evolution of microstructures in finite plasticity. In: K. Hackl (Ed.), IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. Springer, Dordrecht, 2010.

    Google Scholar 

  15. Biot, M.A., Mechanics of Incremental Deformations. John Wiley & Sons, New York, 1965.

    Google Scholar 

  16. Germain, P., Cours de Mécanique des Milieux Continus. Masson et Cie, Paris, 1973.

    MATH  Google Scholar 

  17. Nguyen, Q.S., Stability and Nonlinear Solid Mechanics. John Wiley & Sons, New York, 2000.

    Google Scholar 

  18. Ziegler, H. and Wehrli, C., The derivation of constitutive relations from the free energyand the dissipation function. In: T.Y. Wu and J.W. Hutchinson (Eds.), Advances in Applied Mechanics IV. Academic Press, 1987.

    Google Scholar 

  19. Mielke, A., Finite elastoplasticity, Lie groups and geodesics on SL(d). In: P. Newton, A. Weinstein, and P. Holmes (Eds.), Geometry, Dynamics, and Mechanics. Springer, Berlin, 2002.

    Google Scholar 

  20. Miehe, C., Schotte, J., and Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J. Mech. Phys. Solids, 50:2123–2167, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hackl, K., Mielke, A., and Mittenhuber, D., Dissipation distances in multiplicative elastoplasticity. In: W.L. Wendlang and M. Efendiev (Eds.), Analysis and Simulation of Multifield Problems. Springer, New York, 2003.

    Google Scholar 

  22. Carstensen, C., Conti, S., and Orlando, A., Mixed analytical-numerical relaxation in finite single-slip crystal plasticity. Contin. Mech. Thermodyn., 20:275–301, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  23. Hackl, K., Schmidt-Baldassari, M., and Zhang, W., A micromechanical model for polycrystalline shape-memory alloys. Mat. Sci. Eng. A, 378:503–506, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hackl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hackl, K., Kochmann, D.M. (2010). An Incremental Strategy for Modeling Laminate Microstructures in Finite Plasticity – Energy Reduction, Laminate Orientation and Cyclic Behavior. In: de Borst, R., Ramm, E. (eds) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9809-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9809-2_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9808-5

  • Online ISBN: 978-90-481-9809-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics