Skip to main content

Multiscale/Multiphysics Model for Concrete

  • Chapter
  • First Online:
Multiscale Methods in Computational Mechanics

Abstract

In this paper a general model for the analysis of concrete as multiphase porous material, obtained from microscopic scale by applying the so-called Hybrid Mixture Theory, is presented. The final formulation of the governing equations at macro-level is obtained by upscaling their local form from the micro-scale. This procedure allows for taking into account both bulk phases and interfaces of the multiphase system, to define several quantities used in the model and to obtain some thermodynamic restrictions imposed on the evolution equations describing the material deterioration. Two specific forms of the general model adapted to the case of concrete structures under fire and to the case of concrete degradation due to the leaching process are shown. Some numerical simulations aimed at proving the validity of the approach adopted, are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schrefler B.A., Mechanics and thermodynamics of saturated-unsaturated porous materials and quantitative solutions. Appl. Mech. Rev., 55(4):351–388, 2002.

    Article  Google Scholar 

  2. Gawin D., Pesavento F., and Schrefler B.A., Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Engrg., 192:1731–1771, 2003.

    Article  MATH  Google Scholar 

  3. Gawin D., Pesavento F., and Schrefler B.A., Hygro-thermo-chemo-mechanical modeling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int. J. Numer. Meth. Engng., 67(3):299–331, 2006.

    Article  MATH  Google Scholar 

  4. Gawin D., Pesavento F., and Schrefler B.A., Modeling of cementitious materials exposed to isothermal calcium leaching, with considering process kinetics and advective water flow. Part 1: Theoretical model. Solids and Structures, 45:6221–6240, 2008.

    Article  MATH  Google Scholar 

  5. Pesavento F., Gawin D., and Schrefler B.A., Modeling cementitious materials as multiphase porous media: Theoretical framework and applications. ActaMech., 201:313–339, 2008.

    MATH  Google Scholar 

  6. Gawin D., Pesavento F., and Schrefler B.A., Hygro-thermo-chemo-mechanical modeling of concrete at early ages and beyond. Part II: Shrinkage and creep of concrete. Int. J. Numer. Meth. Engng., 67(3):332–363, 2006.

    Article  MATH  Google Scholar 

  7. Gawin D., Pesavento F., and Schrefler B.A., Modeling of cementitious materials exposed to isothermal calcium leaching, with considering process kinetics and advective water flow. Part 2: Numerical solution. Solids and Structures, 45:6241–6268, 2008.

    Article  MATH  Google Scholar 

  8. Zienkiewicz O.C. and Taylor R.L., The Finite Element Method, Volume 1: The Basis. Butterworth-Heinemann, Oxford, 2000.

    Google Scholar 

  9. Gray W.G. and Schrefler B.A., Analysis of the solid phase stress tensor in multiphase porous media. Int. J. Numer. Anal. Meth. Geomech., 31(4):541–581, 2007.

    Article  Google Scholar 

  10. Gray W.G., Schrefler B.A., and Pesavento F., The solid phase stress tensor in porous media mechanics and the Hill-Mandel condition. J. Mech. Phys. Solids, 57:539–554, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gawin D., Pesavento, F. and Schrefler B.A., Modelling of de-formations of high strength concrete at elevated temperatures.Mat. and Struct., 37(268):218–236, 2004.

    Article  Google Scholar 

  12. Mazars J., Application de la mecanique de l’endommagement au comportament non lineaire et la rupture du beton de structure. Thèse de Doctorat d’Etat, L.M.T., Université de Paris, France, 1984.

    Google Scholar 

  13. Nechnech W., Reynouard J.M., and Meftah F., On modelling of thermo-mechanical concrete for the finite element analysis of structures submitted to elevated temperatures. In: de Borst, R., Mazars, J., Pijaudier-Cabot, G., vanMier, J.G.M. (Eds.), Fracture Mechanics of Concrete Structures, pp. 271–278, Swets & Zeitlinger, Lisse, 2001.

    Google Scholar 

  14. Chaboche J.L., Continuum Damage Mechanics: Part I - General concepts. J. Appl.Mech., 55:59–64, 1988.

    Article  Google Scholar 

  15. Lewis R.W. and Schrefler B.A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd ed. Wiley & Sons, Chichester, 1998.

    MATH  Google Scholar 

  16. Gawin D., Pesavento F., and Schrefler B.A., Modelling creep and shrinkage of concrete by means of effective stress. Mat. and Struct., 40:579–591, 2007.

    Article  Google Scholar 

  17. Khoury G.A., Strain components of nuclear-reactor-type concretes during first heating cycle. Nucl. Eng. Des., 156:313–321, 1995.

    Article  Google Scholar 

  18. Thelandersson S., Modeling of combined thermal and mechanical action on concrete. J. Engrg. Mech. (ASCE), 113(6):893–906, 1987.

    Article  Google Scholar 

  19. Schrefler B.A., Brunello P., Gawin D., Majorana C.E., and Pesavento F., Concrete at high temperature with application to tunnel fire. Computation Mechanics 29:43–51, 2002.

    Article  MATH  Google Scholar 

  20. Gawin D., Pesavento F., and Schrefler B.A., Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Engrg. 195:5707–5729, 2006.

    Article  MATH  Google Scholar 

  21. UNE-EN 1991-1-2, Eurocodice 1: Azioni sulle strutture. Parte 1-2: Azioni generali. Azioni su strutture esposte al fuoco, May 2004.

    Google Scholar 

  22. Kuhl D., Bangert F., and Meschke G., Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling. Int. J. of Solids and Structures, 41:15–40, 2004.

    Article  MATH  Google Scholar 

  23. Gerard B., Pijaudier-Cabot G., and Laborderie C., Coupled diffusion-damage modeling and the implications on failure due to strain localization. Int. J. Solids and Structures, 35(31–32):4107–4120, 1998.

    Article  MATH  Google Scholar 

  24. Adenot F. and Buil M., Modelling of the corrosion of the cement paste by deionized water. Cement and Concrete Research, 22(2–3): 489–495, 1992.

    Article  Google Scholar 

  25. Torrenti J.-M., Mainguy M., Adenot F., and Tognazzi C., Modelling of leaching in concrete. In R. de Borst, N. Bicanic, H. Mang, and G. Meschke (Eds.), Computational Modelling of Concrete Structures, Proc. of Euro-C 1998, A.A. Balkema Publishers, Rotterdam, pp. 531–538, 1998.

    Google Scholar 

  26. Ulm F.-J., Torrenti J.-M., and Adenot F., Chemoporoplasticity of calcium leaching in concrete. Journal of Engineering Mechanics, 15(10):1200–1211, 1999.

    Article  Google Scholar 

  27. Kuhl D., Bangert F., and Meschke G., Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling. Int. J. Solids and Structures, 41:15–40, 2004.

    Article  MATH  Google Scholar 

  28. Gawin D., Pesavento F., and Schrefler B.A., Modeling deterioration of cementitious materials exposed to calcium leaching in non-isothermal conditions. Comput. Methods Appl. Mech. Engrg., 198:3051–3083, 2009.

    Article  Google Scholar 

  29. Atkins P. and De Paula J., Physical Chemistry. Oxford University Press, New York, 2002.

    Google Scholar 

  30. Yokozekia K, Watanabea K., Sakataa N., and Otsuki N., Modeling of leaching from cementitious materials used in underground environment. Appl. Clay Science, 26:293–308, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard A. Schrefler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schrefler, B.A., Pesavento, F., Gawin, D. (2011). Multiscale/Multiphysics Model for Concrete. In: de Borst, R., Ramm, E. (eds) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9809-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9809-2_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9808-5

  • Online ISBN: 978-90-481-9809-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics