Skip to main content

Computational Multiscale Model for NATM Tunnels: Micromechanics-Supported Hybrid Analyses

  • Chapter
  • First Online:
Multiscale Methods in Computational Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 55))

Abstract

Knowledge of the stress state in shotcrete tunnel shells is a necessary requirement to assess the safety of these structures. Estimation of these stresses from measured 3D tunnel shell displacement requires material models for shotcrete. Preferably such models should be able to deal with on-site adaptations of the water-cement and aggregate-cement ratios. Therefore, we recall the fundamentals of continuum micromechanics and its application to shotcrete in order to upscale elastic and strength properties from the micron scale (where unhydrated cement can be discerned from its reaction products with water, called hydrates), via the intermediate scale of cement paste, to the shotcrete scale. Comparison of model predictions with experimental data shows that the elasticity and strength evolutions of hydrating shotcrete can be predicted reasonably well from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics models are combined with 3D displacement measurements of a shotcrete tunnel shell. This hybrid approach provides insight into the load-carrying behavior of the tunnel, and it allows for a safety assessment of the shell’s structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Acker. Micromechanical analysis of creep and shrinkage mechanisms. In F.-J. Ulm, Z.P. Bažant, and F.H. Wittmann (Eds.), Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-brittle Materials, 6th International Conference CONCREEP@MIT, Amsterdam, pp. 15–26. Elsevier, 2001.

    Google Scholar 

  2. H.S. Armelin and N. Banthia. Development of a general model of aggregate rebound for dry-mix shotcrete (Part II). Materials and Structures, 31(207):195–202, 1998.

    Article  Google Scholar 

  3. V. Baroghel-Bouny. Caractérisation des pâtes de ciment et des bétons-méthodes, analyse, interprétation [Characterization of cement pastes and concretes-methods, analysis, interpretations]. Technical Report, Laboratoire Central des Ponts et Chaussées, Paris, France, 1994 [in French].

    Google Scholar 

  4. J.-F. Barthélémy and L. Dormieux. Détermination du critère de rupture macroscopique d’un milieu poreux par homogénéisation non linèaire [Determination of the macroscopic strength criterion of a porous medium by nonlinear homogenization]. Comptes Rendus Mécanique, 331(4):271–276, 2003. In French.

    Article  MATH  Google Scholar 

  5. G. Beer (Ed.), Numerical Simulation in Tunneling. Springer Verlag, Wien/New York, 2003.

    Google Scholar 

  6. Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials, 6(2):147–157, 1987.

    Article  MathSciNet  Google Scholar 

  7. O. Bernard, F.-J. Ulm, and E. Lemarchand. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement and Concrete Research, 33(9):1293–1309, 2003.

    Article  Google Scholar 

  8. A. Boumiz, C. Vernet, and F. Cohen-Tenoudji. Mechanical properties of cement pastes and mortars at early ages. Advanced Cement Based Materials, 3(3–4):94–106, 1996.

    Google Scholar 

  9. P. Brandtner, B. Moritz, and P. Schubert. On the challenge of evaluating stress in a shotcrete lining: Experiences gained in applying the hybrid analysis method. Felsbau, 25(5):93–98, 2007.

    Google Scholar 

  10. T. Celestino, M. de Mariano, A. Ferreira, and M. Guimaraes. Undercoring technique for stress measurement in shotcrete linings. In J. Golser, W. Hinkel, and W. Schubert (Eds.), Tunnels for People, Proceedings of the World Tunnel Congress 1997, Vienna, Austria, pp. 59–64. Balkema, Rotterdam, the Netherlands, 1997.

    Google Scholar 

  11. G. Constantinides and F.-J. Ulm. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34(1):67–80, 2004.

    Article  Google Scholar 

  12. L. Dormieux, A. Molinari, and D. Kondo. Micromechanical approach to the behavior of poroelastic materials. Journal of Mechanics and Physics of Solids, 50(10):2203–2231, 2002.

    Article  MATH  Google Scholar 

  13. L. Dormieux, J. Sanahuja, and Y. Maalej. Résistance d’un polycristal avec interfaces intergranulaires imparfaites [Strength of a polycrystal with imperfect intergranular interfaces]. Comptes Rendus Mecanique, 335(1):25–31, 2007 [in French].

    Article  MATH  Google Scholar 

  14. L. Dormieux and F.-J. Ulm. Applied Micromechanics of Porous Materials, CISMCourses and Lectures, Vol. 480. Springer Verlag, Wien/New York, 2005.

    MATH  Google Scholar 

  15. J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A, 241:376–396, 1957. Reprinted in [53].

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Feret. On the compactness of hydraulic mortars [Sur la compacitée des mortiers hydrauliques]. Annales des Ponts et Chaussées, 7:5–164, 1892 [in French].

    Google Scholar 

  17. A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja. Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: Fundamentals and application to strength of hydroxyapatite biomaterials. Journal of Materials Science, 42(21):8824–8837, 2007.

    Article  Google Scholar 

  18. A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja. Mechanical behavior of hydroxyapatite biomaterials: An experimentally validated micromechanical model for elasticity and strength. Journal of Biomedical Materials Research Part A, 88(1):149–161, 2009.

    Article  Google Scholar 

  19. A. Fritsch and C. Hellmich. ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity. Journal of Theoretical Biology, 244(4):597–620, 2007.

    Article  Google Scholar 

  20. A. Fritsch, C. Hellmich, and L. Dormieux. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: Experimentally supported micromechanical explanation of bone strength. Journal of Theoretical Biology, 260(2):230–252, 2009.

    Article  Google Scholar 

  21. I.D. Hague. Wet shotcreting - A total system approach, 2001. www.ugc.basf.com (last download: July 31, 2008).

  22. Z. Hashin. Analysis of composite materials - A survey. Journal of Applied Mechanics, 50(3):481–505, 1983.

    Article  MATH  Google Scholar 

  23. C. Hellmich. Shotcrete as part of the New Austrian Tunneling Method: From thermochemomechanical material modeling to structural analysis and safety assessment of tunnels. PhD Thesis, Vienna University of Technology, Vienna, Austria, 1999.

    Google Scholar 

  24. C. Hellmich, J.-F. Barthélémy, and L. Dormieux. Mineral-collagen interactions in elasticity of bone ultrastructure - A continuum micromechanics approach. European Journal of Mechanics - A/Solids, 23(5):783–810, 2004.

    Article  MATH  Google Scholar 

  25. C. Hellmich, J. Macht, and H.A. Mang. Ein hybrides Verfahren zur Bestimmung der Auslastung von Spritzbetonschalen [A hybrid method for determination of the level of utilization of shotcrete shells]. Felsbau, 17(5):422–425, 1999. In German.

    Google Scholar 

  26. C. Hellmich and H.A. Mang. Shotcrete elasticity revisited in the framework of continuum micromechanics: From submicron to meter level. Journal of Materials in Civil Engineering (ASCE), 17(3):246–256, 2005.

    Article  Google Scholar 

  27. C. Hellmich, H.A. Mang, and F.-J. Ulm. Hybrid method for quantification of stress states in shotcrete tunnel shells: Combination of 3D in situ displacement measurements and thermochemoplastic material law. Computers and Structures, 79(22–25):2103–2115, 2001.

    Article  Google Scholar 

  28. C. Hellmich and F.-J. Ulm. Micromechanical model for ultra-structural stiffness of mineralized tissues. Journal of Engineering Mechanics (ASCE), 128(8):898–908, 2002.

    Article  Google Scholar 

  29. C. Hellmich, F.-J. Ulm, and H.A. Mang. Consistent linearization in Finite Element analysis of coupled chemo-thermal problems with exo- or endothermal reactions. Computational Mechanics, 24(4):238–244, 1999.

    Article  MATH  Google Scholar 

  30. C. Hellmich, F.-J. Ulm, and H.A. Mang. Multisurface chemoplasticity I: Material model for shotcrete. Journal of Engineering Mechanics (ASCE), 125(6):692–701, 1999.

    Article  Google Scholar 

  31. Ch. Hellmich and F.-J. Ulm. Drained and undrained poroelastic properties of healthy and pathological bone: A poro-micromechanical investigation. Transport in Porous Media, 58(3):243–268, 2005.

    Article  Google Scholar 

  32. A.V. Hershey. The elasticity of an isotropic aggregate of anisotropic cubic crystals. Journal of Applied Mechanics (ASME), 21:226–240, 1954.

    Google Scholar 

  33. R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11(5):357–372, 1963.

    Article  MATH  Google Scholar 

  34. R. Hill. Continuum micro-mechanics of elastoplastic polycrystals. Journal of Mechanics and Physics of Solids, 13(2):89–101, 1965.

    Article  MATH  Google Scholar 

  35. K. Hofstetter, C. Hellmich, and J. Eberhardsteiner. Development and experimental validation of a continuum micromechanics model for the elasticity of wood. European Journal of Mechanics A/Solids, 24(6):1030–1053, 2005.

    Article  MATH  Google Scholar 

  36. K. Hofstetter, C. Hellmich, and J. Eberhardsteiner. Micromechanical modeling of solidtype and plate-type deformation patterns within softwood materials. A review and an improved approach. European Journal of Mechanics A/Solids, 61(4):343–351, 2007.

    Google Scholar 

  37. K. Hofstetter, Ch. Hellmich, and J. Eberhardsteiner. Predicting wood strength from composition and microstructure: development and experimental verification of a continuum micromechanics model. In L. Dormieux, D. Kondo, and K. Sab (Eds.), Colloque en l’Honneur du Professeur Jean-Louis Auriault: Microstructure et Propriétés des Matériaux, pp 217–222. Presses de l’Ecole Nationale des Ponts et Chaussées, 2005.

    Google Scholar 

  38. W. Kreher. Residual stresses and stored elastic energy of composites and polycrystals. Journal of the Mechanics and Physics of Solids, 38(1):115–128, 1990.

    Article  MATH  Google Scholar 

  39. W. Kreher and A. Molinari. Residual stresses in polycrystals as influenced by grain shape and texture. Journal of the Mechanics and Physics of Solids, 41(12):1955–1977, 1993.

    Article  MATH  Google Scholar 

  40. E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls [Computation of the elastic constants of a polycrystal based on the constants of the single crystal]. Zeitschrift für Physik A Hadrons and Nuclei, 151(4):504–518, 1958 [in German].

    Google Scholar 

  41. R. Lackner, J. Macht, C. Hellmich, and H.A. Mang. Hybrid method for analysis of segmented shotcrete tunnel linings. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 128(4):298–308, 2002.

    Article  Google Scholar 

  42. R. Lackner, J. Macht, and H.A. Mang. Hybrid analysis method for on-line quantification of stress states in tunnel shells. Computer Methods in Applied Mechanics and Engineering, 195(41–43):5361–5378, 2006.

    Article  MATH  Google Scholar 

  43. Lafarge. Internal Report, Lafarge Centre Technique Europe Central, 1997. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, Austria.

    Google Scholar 

  44. Lafarge. Internal Report, Lafarge Centre Technique Europe Central, 2002. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, Austria.

    Google Scholar 

  45. N. Laws. The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7(1):91–97, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Lechner, C. Hellmich, and H.A. Mang. Short-term creep of shotcrete - Thermochemoplastic material modelling and nonlinear analysis of a laboratory test and of a NATM excavation by the Finite Element method. In P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding, and E. Ramm (Eds.), Proceedings of the International Symposium on Discontinuous Modelling of Cohesive-Frictional Materials, Lecture Notes in Physics, pp. 47–62. Springer, Berlin, 2001.

    Google Scholar 

  47. E. Lemarchand, F.-J. Ulm, and L. Dormieux. Effect of inclusions on friction coefficient of highly filled composite materials. Journal of Engineering Mechanics (ASCE), 128(8):876–884, 2002.

    Article  Google Scholar 

  48. K. Li, X.-L. Gao, and A.K. Roy. Micromechanical modeling of viscoelastic properties of carbon nanotube - Reinforced polymer composites. Mechanics of Advanced Materials and Structures, 13(4):317–328, 2006.

    Article  Google Scholar 

  49. J. Macht, C. Hellmich, R. Lackner, W. Schubert, and H.A. Mang. Assessment of a support system for squeezing rock conditions by means of a hybrid method. Felsbau, 18(6):9–15, 2000.

    Google Scholar 

  50. J. Macht, R. Lackner, C. Hellmich, and H.A. Mang. Shotcrete creep properties - Review of material tests and structural analyses of tunnels. In F.-J. Ulm, Z. Bažant, and F.Wittmann (Eds.), Proceedings of the 6th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials, pp. 285–300. Elsevier Science, Amsterdam, 2001.

    Google Scholar 

  51. J. Macht, R. Lackner, C. Hellmich, and H.A. Mang. Quantification of stress states in shotcrete shells. In G. Beer (Ed.), Numerical Simulation in Tunneling, pp. 225–248. Springer-Verlag, Wien/New York, 2003.

    Google Scholar 

  52. A. Malasoma, A. Fritsch, C. Kohlhauser, T. Brynk, C. Vitale-Brovarone, Z. Pakiela, J. Eberhardsteiner, and C. Hellmich. Micromechanics of bioresorbable porous cel2 glass ceramic scaffolds for bone tissue engineering. Advances in Applied Ceramics, 107(5):277–286, 2008.

    Article  Google Scholar 

  53. X. Markenscoff and A. Gupta, Collected Works of J.D.Eshelby - The Mechanics of Defects and Inhomogeneities, Solid Mechanics and Its Applications, Vol. 133. Springer, 2006.

    Google Scholar 

  54. G. Mehlhorn. Der Ingenieurbau: Grundwissen - Werkstoffe, Elastizitätstheorie [Basic Knowledge in Civil Engineering: Materials and Elasticity Theory], Vol. 4. Ernst & Sohn, Berlin, 1996 [in German].

    Google Scholar 

  55. G. Meschke. Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model. International Journal of Numerical Methods in Engineering, 39(18):3123–3143, 1996.

    Article  MATH  Google Scholar 

  56. T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21:571–574, 1973.

    Article  Google Scholar 

  57. A.M. Neville. Properties of Concrete, 3rd ed. Pitman Publishing Ltd., 1981.

    Google Scholar 

  58. F. Pacher. Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaus [Measurements of deformations in experimental tunnels to explore the behavior of rock and to design the lining]. Felsmechanik und Ingenieurgeologie, I:149–161, 1964 [in German].

    Google Scholar 

  59. M. Pfeuffer and W. Kusterle. Rheology and rebound behaviour of dry-mix shotcrete. Cement and Concrete Research, 31(11):1619–1625, 2001.

    Article  Google Scholar 

  60. B. Pichler, C. Hellmich, and J. Eberhardsteiner. Spherical and acicular representation of hydrates in a micromechanical model for cement paste - Prediction of early-age elasticity and strength. Acta Mechanica, 203(3/4):137–162, 2009.

    Article  MATH  Google Scholar 

  61. B. Pichler, S. Scheiner, and C. Hellmich. From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete. Acta Geotechnica, 3(4):273–294, 2008.

    Article  Google Scholar 

  62. N. Pillar. Determination of early age properties of fibre reinforced shotcrete to predict the cracking behavior. PhD Thesis, submitted to the University of New South Wales, Private Communication, Sydney, Australia, 2002.

    Google Scholar 

  63. L. Rabcewicz. Patentschrift. Österreichisches Patent Nr. 165573 [Patent specification, Austrian Patent No. 165573], 1948 [in German].

    Google Scholar 

  64. L. Rabcewicz, J. Golser, and E. Hackl. Die Bedeutung der Messung im Hohlraumbau, Teil I [The significance of measurement in tunneling]. Der Bauingenieur, 47(7):225–234, 1972 [in German].

    Google Scholar 

  65. R. Rokahr and K. Lux. Einfluß des rheologischen Verhaltens des Spritzbetons auf den Ausbauwiderstand [Influence of the rheological behavior of shotcrete on the excavation resistance]. Felsbau, 5:11–18, 1987.

    Google Scholar 

  66. R. Rokahr and R. Zachow. Ein neues Verfahren zur täglichen Kontrolle der Auslastung einer Spritzbetonschale [A new method for daily monitoring of the stress intensity of a sprayed concrete lining]. Felsbau, 15(6):430–434, 1997 [in German].

    Google Scholar 

  67. J. Sanahuja, L. Dormieux, and G. Chanvillard. Modelling elasticity of a hydrating cement paste. Cement and Concrete Research, 37(10):1427–1439, 2007.

    Article  Google Scholar 

  68. S. Scheiner and C. Hellmich. Continuum microviscoelasticity model for aging basic creep of early-age concrete. Journal of Engineering Mechanics (ASCE), 135(4):307–323, 2009.

    Article  Google Scholar 

  69. S. Scheiner, B. Pichler, C. Hellmich, and H.A. Mang. Damage and disaster prevention in NATM tunnels during construction: Micromechanics-supported hybrid analyses. In A. Ibrahimbegovic and M. Zlatar (Eds.), Proceedings of the NATO Advanced Research Workshop ‘Damage assessment and reconstruction after natural disasters and previous military activities’, pp. 145–171. Springer-Verlag, 2008.

    Google Scholar 

  70. S. Scheiner, R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F. Rustichelli, and C. Hellmich. Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials, 30(12):2411–2419, 2009.

    Article  Google Scholar 

  71. P. Schubert. Beitrag zum rheologischen Verhalten von Spritzbeton [Contribution to the rheological behavior of shotcrete]. Felsbau, 6:150–153, 1988.

    Google Scholar 

  72. W. Schubert and A. Steindorfer. Selective displacement monitoring during tunnel excavation. Felsbau, 14(2):93–97, 1996.

    Google Scholar 

  73. W. Schubert, A. Steindorfer, and E.A. Button. Displacement monitoring in tunnels - An overview. Felsbau, 20(2):7–15, 2002.

    Google Scholar 

  74. J. Sercombe, C. Hellmich, F.-J. Ulm, and H.A. Mang. Modeling of early-age creep of shotcrete I: Model and model parameters. Journal of Engineering Mechanics (ASCE), 126(3):284–291, 2000.

    Article  Google Scholar 

  75. L. Sorelli, G. Constantinides, F.-J. Ulm, and F. Toutlemonde. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques. Cement and Concrete Research, 38(12):1447–1456, 2008.

    Article  Google Scholar 

  76. A. Steindorfer, W. Schubert, and K. Rabensteiner. Problemorientierte Auswertung geotechnischer Messungen [Advanced evaluation of geotechnical displacement monitoring data]. Felsbau, 13(6):386–390, 1995 [in German].

    Google Scholar 

  77. Z. Sun, G. Ye, and S. Shah. Microstructure and early-age properties of Portland cement paste - Effects of connectivity of solid phases. ACI Materials Journal, 102(1):122–129, 2005.

    Google Scholar 

  78. P.M. Suquet (Ed.). Continuum Micromechanics, CISM Courses and Lectures, Vol. 377. Springer Verlag, Wien/New York, 1997.

    Google Scholar 

  79. J. Tritthart and F. Häußler. Pore solution analysis of cement pastes and nanostructural investigations of hydrated C3S. Cement and Concrete Research, 33(7):1063–1070, 2003.

    Article  Google Scholar 

  80. F.-J. Ulm, G. Constantinides, and F.H. Heukamp. Is concrete a poromechanics material? - A multiscale investigation of poroelastic properties. Materials and Structures / Materiaux et Constructions, 37(1):43–58, 2004.

    Google Scholar 

  81. F.-J. Ulm and O. Coussy. Strength growth as chemo-plastic hardening in early age concrete. Journal of Engineering Mechanics (ASCE), 122(12):1123–1132, 1996.

    Article  Google Scholar 

  82. K. Wesche. Baustoffe für tragende Bauteile [Building materials for structural components], 3rd ed. Bauverlag, Wiesbaden, Germany, 1974 [in German].

    Google Scholar 

  83. A. Zaoui. Structural morphology and constitutive behavior of microheterogeneous materials, P.M. Suquet (Ed.), Continuum Micromechanics, CISM Courses and Lectures, Vol. 377, chapter 6, pp. 291–347. Springer-Verlag, Wien New York, 1997.

    Google Scholar 

  84. A. Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE), 128(8):808–816, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert A. Mang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scheiner, S., Pichler, B., Hellmich, C., Mang, H.A. (2011). Computational Multiscale Model for NATM Tunnels: Micromechanics-Supported Hybrid Analyses. In: de Borst, R., Ramm, E. (eds) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9809-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9809-2_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9808-5

  • Online ISBN: 978-90-481-9809-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics