Skip to main content

Multiscale Modeling and Simulation of Composite Materials and Structures

  • Chapter
  • First Online:
Multiscale Methods in Computational Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 55))

Abstract

We describe various spatial and temporal multiscale approaches for composite materials and structures. Spatial multiscale approaches are grouped into two categories: information-passing and concurrent. In the concurrent multiscale methods in space multiple scales are simultaneously resolved, whereas in the information-passing schemes, the fine scale is modeled and its gross response is infused into the continuum scale. The issue of appropriate scale selection is discussed. Among the temporal multiscale application we describe block cycle and temporal homogenization approaches with application to fatigue life prediction of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Fish (Ed.), Bridging the Scales in Science and Engineering, Oxford University Press, 2009.

    Google Scholar 

  2. J. Fish, Multiscale computations: Boom or bust, IACM Expressions, 22, January 2008.

    Google Scholar 

  3. E. Sanchez-Palencia, Lecture Notes in Physics, Vol. 127. Springer-Verlag, Berlin, 1980.

    Google Scholar 

  4. J.M. Guedes and N. Kikuchi, Comput. Methods Appl. Mech. Engng., 83:143–198, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Terada and N. Kikuchi, In S. Ghosh and M. Ostoja-Starzewski (Eds.), Computational Methods in Micromechanics, Vol. AMD-212/MD-62, pp. 1–16, ASME, 1995.

    Google Scholar 

  6. Z. Yuan and J. Fish, Towards realization of computational homogenization in practice, J. Numer. Methods Engrg., 73(3):361–380, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Jardak and R. Ghanem, Comput. Methods Appl. Mech. Engng., 193(6/8):429–447, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Oskay and J. Fish, On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems, Comput. Mech., 42(2):181–195, 2008.

    Article  MATH  Google Scholar 

  9. J. Fish and A. Ghouli, Multiscale analytical sensitivity analysis for composite materials, Int. J. Numer. Methods Engrg., 50:1501–1520, 2001.

    Article  MATH  Google Scholar 

  10. F. Feyel and J.-L. Chaboche, Comput. Methods Appl. Mech. Engrg., 183:309–330, 2000.

    Article  MATH  Google Scholar 

  11. E. Giladi and H.B. Keller, Numer. Math., 93(2), 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Waisman and J. Fish, Comput. Methods Appl. Mech. Engrg., 195(44/47):6542–6559, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Ghosh and S. Moorthy, Comput. Methods Appl. Mech. Engrg., 121(1/4):373–409, 1995.

    Article  MATH  Google Scholar 

  14. J. Aboudi, J. Engrg. Sci., 20(55):605–621, 1982.

    Article  MATH  Google Scholar 

  15. L.V. Berlyand and A.G. Kolpakov, Arch. for Rat. Mech. Anal., 159:179–227, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Moulinec and P. Suquet, C.R. Acad. Sci. Paris II, 318:1417–1423, 1994.

    MATH  Google Scholar 

  17. H. Moulinec and P. Suquet, Comput. Meth. Appl. Mech. Engrg., 157:69–94, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  18. G.J. Dvorak, Proc. R. Soc. Lond. A, 437:311–327, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y.A. Bahei-El-Din, A.M. Rajendran, and M.A. Zikry, Int. J. Sol. Structures, 41:2307–2330, 2004.

    Article  MATH  Google Scholar 

  20. G.J. Dvorak and Y. Benveniste, Proc. R. Soc. Lond. A, 437:291–310, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Laws, On the thermostatics of composite materials, J. Mech. Phys. Solids, 21:9–17, 1973.

    Article  Google Scholar 

  22. J.Willis. In C.S. Yih (Ed.), Advances in Applied Mechanics, Vol. 21, pp. 1–78, Academic Press, New York, 1981.

    Google Scholar 

  23. G.J. Dvorak, Proc. R. Soc. Lond. A, 431:89–110, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Oskay and J. Fish, Eigendeformation-based reduced order homogenization, Comp. Methods Appl. Mech. Engrg., 196:1216–1243, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Yuan and J. Fish, Multiple scale eigendeformation-based reduced order homogenization, Comput. Methods Appl. Mech. Engrg., 198(21/26), 2016–2038, 2009.

    Article  Google Scholar 

  26. C. Oskay and J. Fish, Comput. Mech., 42(2):181–195, 2008.

    Article  MATH  Google Scholar 

  27. J. Fish and Z. Yuan, N-scale model reduction theory. In Bridging the Scales in Science and Engineering, J. Fish (Ed.), Oxford University Press, 2009.

    Google Scholar 

  28. T.I. Zohdi, J.T. Oden, and G.J. Rodin, Comput. Methods Appl. Mech. Engrg., 138:273–298, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Ghosh, K. Lee, and P. Raghavan, Int. J. Solids Struct., 38:2335–2385, 2001.

    Article  MATH  Google Scholar 

  30. M.G.D. Geers, V. Kouznetsova, and W.A.M. Brekelmans, J. Phys. IV, 11:145–152, 2001.

    Article  Google Scholar 

  31. E. Weinan and B. Engquist, Comm. Math. Sci., 1:87–132, 2003.

    MATH  Google Scholar 

  32. J. Fish and R. Fan, Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading, Int. J. Numer. Methods Engrg., 76(7):1044–1064, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Fish, P. Nayak and M.H. Holmes, Microscale reduction error indicators and estimators for a periodic heterogeneous medium, Comput. Mech., 14:1–16, 1994.

    Article  MathSciNet  Google Scholar 

  34. M. Ostoja-Starzewski, S.D. Boccara, and I. Jasiuk, Couple-stress moduli and characteristic length of a two-phase composite, Mech. Res. Comm., 26(4):387–396, 1999.

    Article  MATH  Google Scholar 

  35. O. van der Sluis, P.H.J. Vosbeek, P.J.G. Schreurs, and H.E.H. Meijer, Homogenization of heterogeneous polymers, Int. J. Solids Struct., 36:3193–3214, 1999.

    Article  MATH  Google Scholar 

  36. J. Fish and Z. Yuan, Multiscale enrichment based on the partition of Unity, Int. J. Numer. Methods Engrg., 62(10):1341–1359, 2005.

    Article  MATH  Google Scholar 

  37. J. Fish and Z. Yuan, Multiscale enrichment based on partition of unity for nonperiodic fields and nonlinear problems, Comput. Mech., 40:249–259, 2007.

    Article  MATH  Google Scholar 

  38. I. Babuska, G. Caloz, and J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM. J. Numer. Anal., 4:945–981, 1994.

    Article  MathSciNet  Google Scholar 

  39. I. Babuska and J.M. Melenk, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139:289–314, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Engrg., 45(5):601–620, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  41. N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46(5):131–150, 1999.

    Article  MATH  Google Scholar 

  42. M. Quaresimin and M. Ricotta, Life prediction of bonded joints in composite materials, Int. J. Fatigue, 28(10):1166–1176, October 2006.

    Article  MATH  Google Scholar 

  43. J. Fish and Q. Yu, Computational mechanics of fatigue and life predictions for composite materials and structures, Comput. Methods Appl. Mech. Engrg., 191:4827–4849, 2002.

    Article  MATH  Google Scholar 

  44. C. Oskay and J. Fish, Multiscale modeling of fatigue for ductile materials, Int. J. Multiscale Comput. Engrg., 2(3):1–25, 2004.

    MathSciNet  Google Scholar 

  45. J. Fish and C. Oskay, Nonlocal multiscale fatigue model, Mech. Adv. Mater. Struct., 12(6):485–500, 2005.

    Article  Google Scholar 

  46. E. Gal, Z. Yuan, W. Wu, and J. Fish, A multiscale design system for fatigue life prediction, Int. J. Multiscale Comput. Engrg., 5(6):435–446, 2007.

    Article  Google Scholar 

  47. J. Fish and R. Fan, Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading, Int. J. Numer. Methods Engrg., 76:1044–1064, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  48. C. Oskay and J. Fish, Eigendeformation-based reduced order homogenization, Comput. Methods Appl. Mech. Engrg., 196:1216–1243, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  49. Simmetrix, Inc., SBIR Phase II Contract F33615-99-C-5021.

    Google Scholar 

  50. J. Fish and V. Belsky, Multi-grid method for periodic heterogeneous media, Part 2: Multiscale modeling and quality control in multidimensional case, Comput. Methods Appl. Mech. Engrg., 126:17–38, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Fish and V. Belsky, Multigrid method for periodic heterogeneous media, Part 1: Convergence studies for one-dimensional case, Comput. Methods Appl. Mech. Engrg., 126:1–16, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Fish, Bridging the scales in nano engineering and science, J. Nanoparticle Res., 8:577–594, 2006.

    Article  Google Scholar 

  53. G. Wheatley, R. Niefanger, Y. Estrin, and X.Z. Hu, Fatigue crack growth in 316l stainless steel. Key Engrg. Mater., 145–149:631–636, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Fish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fish, J. (2011). Multiscale Modeling and Simulation of Composite Materials and Structures. In: de Borst, R., Ramm, E. (eds) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9809-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9809-2_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9808-5

  • Online ISBN: 978-90-481-9809-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics