Skip to main content

Whole Grains and Their Constituents in the Prevention of Colon Cancer

  • Chapter
  • First Online:
Vegetables, Whole Grains, and Their Derivatives in Cancer Prevention

Part of the book series: Diet and Cancer ((DICA,volume 2))

  • 1049 Accesses

Abstract

Cereal grains are important stable food worldwide. When used as whole-grain products, they provide a good source, not only of energy and protein, but minerals, vitamins, phytochemicals and dietary fibre. Since 1970s, evidence has been accumulating to suggest that high consumption of whole grains protects against cardiovascular diseases and certain types of cancers, particularly colon cancer. This chapter gives first a brief overview of the epidemiological evidence regarding whole grains and colon cancer and then reviews the substantial number of experimental studies which have investigated the effects of different whole grains and their constituents on colon carcinogenesis in animal models. Lastly, the underlying mechanisms whereby whole grains mediate their effects on colon cancer development will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29:95–120

    PubMed  CAS  Google Scholar 

  • Alabaster O, Tang ZC, Frost A et al (1993) Potential synergism between wheat bran and psyllium: enhanced inhibition of colon cancer. Cancer Lett 75:53–58

    Article  PubMed  CAS  Google Scholar 

  • Alabaster O, Tang ZC, Frost A et al (1995) Effect of β-carotene and wheat bran fiber on colonic aberrant crypt and tumor formation in rats exposed to azoxymethane and high dietary fat. Carcinogenesis 16:127–132

    Article  PubMed  CAS  Google Scholar 

  • Alberts DS, Martínez ME, Roe DJ et al (2000) Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. N Engl J Med 342:1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Alberts DS, Ritenbaugh C, Story JA et al (1996) Randomized, double-blinded, placebo-controlled study of effect of wheat bran fiber and calcium on fecal bile acids in patients with resected adenomatous colon polyps. J Natl Cancer Inst 88:81–92

    Article  PubMed  CAS  Google Scholar 

  • Archer SY, Meng S, Shei A et al (1998) p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95:6791–6796

    Article  PubMed  CAS  Google Scholar 

  • Augenlicht LH, Anthony GM, Church TL et al (1999) Short-chain fatty acid metabolism, apoptosis, and Apc-initiated tumorigenesis in the mouse gastrointestinal mucosa. Cancer Res 59:6005–6009

    PubMed  CAS  Google Scholar 

  • Barnes DS, Clapp NK, Scott DA et al (1983) Effects of wheat, rice, corn, and soybean bran on 1,2-dimethylhydrazine-induced large bowel tumorigenesis in F344 rats. Nutr Cancer 5:1–9

    Article  PubMed  CAS  Google Scholar 

  • Bingham SA, Day NE, Luben R et al (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC): an observational study. Lancet 361:1496–1501

    Article  PubMed  Google Scholar 

  • Bonithon-Kopp C, Kronborg O, Giacosa A et al (2000) Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. Lancet 356:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Bordonaro M, Lazarova DL, Sartorelli AC (2008) Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle 7:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Caderni G, Luceri C, De Filippo C et al (2001) Slow-release pellets of sodium butyrate do not modify azoxymethane (AOM)-induced intestinal carcinogenesis in F344 rats. Carcinogenesis 22:525–527

    Article  PubMed  CAS  Google Scholar 

  • Chang W-C, Lupton JR, Frølich W et al (1994) A very low intake of fat is required to decrease fecal bile acid concentrations in rats. J Nutr 124:181–187

    PubMed  CAS  Google Scholar 

  • Cotterchio M, Boucher BA, Manno M et al (2006) Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr 136:3046–3053

    PubMed  CAS  Google Scholar 

  • Danbara N, Yuri T, Tsujita-Kyutoku M et al (2005) Enterolactone induces apoptosis and inhibits growth of Colo 201 human colon cancer cells both in vitro and in vivo. Anticancer Res 25:2269–2276

    PubMed  CAS  Google Scholar 

  • Davies MJ, Bowey EA, Adlercreutz H (1999) Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats. Carcinogenesis 20:927–931

    Article  PubMed  CAS  Google Scholar 

  • DeCosse JJ, Miller HH, Lesser ML (1989) Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J Natl Cancer Inst 81:1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Deschner EE, Ruperto JF, Lupton JR et al (1990) Dietary butyrate (tributyrin) does not enhance AOM-induced colon tumorigenesis. Cancer Lett 52:79–82

    Article  PubMed  CAS  Google Scholar 

  • Drankhan K, Carter J, Madl R et al (2003) Antitumor activity of wheats with high ortophenolic content. Nutr Cancer 47:188–194

    Article  PubMed  CAS  Google Scholar 

  • Freeman HJ (1986) Effects of differing concentrations of sodium butyrate on 1,2-dimethylhydrazine-induced rat intestinal neoplasia. Gastroenterology 91:596–602

    PubMed  CAS  Google Scholar 

  • Fulcher RG, Duke RTK (2002) Whole-grain structure and organization: implications for nutritionists and processors. In: Marquart L, Slavin JL, Fulcher RG (eds) Whole-grain foods in health and disease. American Association of Cereal Chemists, St Paul, MN 10: 9–45

    Google Scholar 

  • Fusunyan RD, Quinn JJ, Fujimoto M et al (1999) Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol Med 5:631–640

    PubMed  CAS  Google Scholar 

  • Gallaher DD, Locket PL, Gallaher CM (1992) Bile acid metabolism in rats fed two levels of corn oil and brans of oat, rye and barley and sugar beet fiber. J Nutr 122:473–481

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Platz EA (1999) Colorectal cancer: the problems. In: Schmiegel W, Schölmerich J (eds) Colorectal cancer: molecular mechanisms, premalignant state and its prevention (Falk symposium 109). Kluwer Academic, Dortrecht

    Google Scholar 

  • Glinghammar B, Holmberg K, Rafter J (1999) Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis 20:969–976

    Article  PubMed  CAS  Google Scholar 

  • GrÃ¥sten SM, Juntunen KS, Poutanen KS et al (2000) Rye bread improves bowel function and decreases the concentrations of some compounds that are putative colon cancer risk markers in middle-aged women and men. J Nutr 130:2215–2221

    PubMed  Google Scholar 

  • GrÃ¥sten SM, Pajari AM, Liukkonen KH et al (2002) Fibers with different solubility charasterictics alter similarly the metabolic activity of intestinal microbiota in rats fed cereal brans and inulin. Nutr Res 22:1435–1444

    Article  Google Scholar 

  • Hague PR, Elder DJE, Hicks DJ et al (1995) Apoptosis in colorectal tumor cells: induction by the short chain fatty acids butyrate, propionate, and acetate, and the bile salt deoxycholate. Int J Cancer 60:400–406

    Article  PubMed  CAS  Google Scholar 

  • Hioki K, Shivapurkar N, Oshima H et al (1997) Suppression of intestinal polyp development by low-fat and high-fiber diet in ApcΔ716 knockout mice. Carcinogenesis 18:1863–1865

    Article  PubMed  CAS  Google Scholar 

  • Hirano F, Tanaka H, Makino Y et al (1996) Induction of the transcription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids. Carcinogenesis 17:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hirose M, Ozaki K, Takaba K et al (1991) Modifying effects of the naturally occurring antioxidants gamma-oryzanol, phytic acid, tannic acid and n-tritriacontane-16, 18-dione in a rat wide-spectrum organ carcinogenesis model. Carcinogenesis 12:1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Huang XP, Fan XT, Desjeux JF et al (1992) Bile acids, non-phorbol-ester-type tumor promoters, stimulate the phosphorylation of protein kinase C substrates in human platelets and colon cell line HT29. Int J Cancer 52:444–450

    Article  PubMed  CAS  Google Scholar 

  • Im E, Martinez JD (2004) Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J Nutr 134:483–436

    PubMed  CAS  Google Scholar 

  • Ishikawa H, Akedo I, Otani T et al (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116:762–767

    Article  PubMed  CAS  Google Scholar 

  • Issa J-P, Ottaviano YL, Celano P (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    Article  PubMed  CAS  Google Scholar 

  • Jacobs LR (1983) Enhancement of rat colon carcinogenesis by wheat bran consumption during the stage of 1,2-dimethylhydrazine administration. Cancer Res 43:4057–4061

    PubMed  CAS  Google Scholar 

  • Jacobs DR Jr, Marquart L, Slavin J et al (1998) Whole grain intake and cancer: an expanded review and meta-analysis. Nutr Cancer 30:85–96

    Article  PubMed  Google Scholar 

  • Jacobs DR Jr, Slavin J, Marquart L (1995) Whole grain intake and cancer: a review of the literature. Nutr Cancer 24:221–229

    Article  Google Scholar 

  • Jacobs LR, Lupton JR (1986) Relationship of between colonic luminal pH, cell proliferation and colon carcinogenesis in 1,2-dimethylhydratzine treated rats fed high fibre diets. Cancer Res 46:1727–1734

    PubMed  CAS  Google Scholar 

  • Jenab M, Thompson L (1998) The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis 19:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Kameue C, Tsukahara T, Yamada K et al (2004) Dietary sodium gluconate protects rats from large bowel cancer by stimulating butyrate production. J Nutr 134:940–944

    PubMed  CAS  Google Scholar 

  • Kanauchi O, Mitsuyama K, Andoh A et al (2008) Modulation of intestinal environment by prebiotic germinated barley foodstuff prevents chemo-induced colonic carcinogenesis in rats. Oncol Rep 20:793–801

    PubMed  CAS  Google Scholar 

  • Katayama M, Yoshimi N, Sakata K et al (2002) Preventive effect of fermented brown rice and rice bran against colon carcinogenesis in male F344 rats. Oncol Rep 9:817–822

    Google Scholar 

  • Kawabata K, Tanaka T, Murakami T et al (1999) Dietary prevention of azoxymethane-induced colon carcinogenesis with rice-germ in F344 rats. Carcinogenesis 20:2109–2115

    Article  PubMed  CAS  Google Scholar 

  • Kawabata K, Yamamoto T, Hara A et al (2000) Modifying effects of ferulic acid on azoxymethan-induced colon carcinogenesis. Cancer Lett 157:15–21

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colon cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kuijsten A, Arts IC, Hollman PC et al (2006) Plasma enterolignans are associated with lower colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 15:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Lanza E, Yu B, Murphy G et al (2007) The polyp prevention trial continued follow-up study: no effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence 8 years after randomization. Cancer Epidemiol Biomarkers Prev 16:1745–1752

    Article  PubMed  Google Scholar 

  • Lapre´ JA, Van der Meer R (1992) Diet-induced increase of colonic bile acids stimulates lytic activity of fecal water and proliferation of colonic cells. Carcinogenesis 13:41–44

    Article  PubMed  Google Scholar 

  • Larsson SC, Giovannucci E, Bergkvist L et al (2005) Whole grain consumption and risk of colorectal cancer: a population-based cohort of 60,000 women. Br J Cancer 92:1803–1807

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mikkelsen IM, Mortensen B et al (2004) Butyrate reduces liver metastasis of rat colon carcinoma cells in vivo and resistance to oxidative stress in vitro. Clin Exp Metastasis 21:331–338

    Article  PubMed  CAS  Google Scholar 

  • Lupton JR, Kurtz PP (1993) Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation. J Nutr 123:1522–1530

    PubMed  CAS  Google Scholar 

  • MacLennan R, Macrae F, Bain C et al (1995) Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. J Natl Cancer Inst 87:1760–1766

    Article  PubMed  CAS  Google Scholar 

  • Madar Z, Timar B, Nyska A et al (1993) Effects of high-fiber diets on pathological changes in DMH-induced rat colon cancer. Nutr Cancer 20:87–96

    Article  PubMed  CAS  Google Scholar 

  • McIntosh GH, Jorgensen L, Royle P (1993) The potential of an insoluble dietary fiber-rich source from barley to protect from DMH-induced intestinal tumors in rats. Nutr Cancer 19:213–221

    Article  PubMed  CAS  Google Scholar 

  • McIntosh GH, Leu RKL, Royle PJ et al (1996) A compartive study of the influence of differing barley brans on DMH-induced intestinal tumours in male Sprague-Dawley rats. J Gastroenterol Hepatol 11:113–119

    Article  PubMed  CAS  Google Scholar 

  • McIntosh GH, Noakes M, Royle PJ et al (2003) Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr 77:967–974

    PubMed  CAS  Google Scholar 

  • McIntosh GH, Royle PJ, Pointing G (2001) Wheat aleurone flour increases cecal beta-glucuronidase activity and butyrate concentration and reduces colon adenoma burden in azoxymethane-treated rats. J Nutr 131:127–131

    PubMed  CAS  Google Scholar 

  • McIntry A, Gibson PR, Yong GP (1993) Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34:386–391

    Article  Google Scholar 

  • McIntry A, Young GP, Taranto T (1991) Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology 101:1274–1281

    Google Scholar 

  • McKeown-Eyssen GE, Bright-See E, Bruce WR et al (1994) A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. J Clin Epidemiol 47:525–536

    Article  PubMed  CAS  Google Scholar 

  • McSherry CK, Cohen BI, Bokkenheuser VD et al (1989) Effects of calcium and bile acid feeding on colon tumors in the rat. Cancer Res 49:6039–6043

    PubMed  CAS  Google Scholar 

  • Morotomi M, Guillem JG, LoGorfo P et al (1990) Production of diacylglyserol, an activator of protein kinase C, by human intestinal microflora. Cancer Res 50:3595–3599

    PubMed  CAS  Google Scholar 

  • Morotomi M, Sakaitani Y, Satou M et al (1997) Effects of a high-fat diet on azoxymethane-induced aberrant crypt foci and fecal biochemistry and microbial activity in rats. Nutr Cancer 27:84–91

    Article  PubMed  CAS  Google Scholar 

  • Mutanen M, Pajari AM, Oikarinen SI (2000) Beef induces and rye bran prevents the formation of intestinal polyps in Apc(Min) mice: relation to beta-catenin and PKC isozymes. Carcinogenesis 21:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Dashwood RH (2006) Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 7:443–452

    Article  PubMed  CAS  Google Scholar 

  • Nagengast FM, Gruppen MJAL, van Munster IP (1995) Role of bile acids in colorectal carcinogenesis. Eur J Cancer 31A:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Nakata S, Yoshida T, Horinaka M et al (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261–6271

    Article  PubMed  CAS  Google Scholar 

  • Ohkawara S, Furuya H, Nagashima K et al (2005) Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J Nutr 135:2878–2883

    PubMed  CAS  Google Scholar 

  • Oikarinen S, Heinonen S, Karppinen S (2003) Plasma enterolactone or intestinal Bifidobacterium levels do not explain adenoma formation in multiple intestinal neoplasia (Min) mice fed with two different types of rye-bran fractions. Br J Nutr 90:119–125

    Article  PubMed  CAS  Google Scholar 

  • Pai R, Tarnawski AS, Tran T (2004) Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 15:2156–2163

    Article  PubMed  CAS  Google Scholar 

  • Pajari AM, Oikarinen S, GrÃ¥sten S et al (2000) Diets enriched with cereal brans or inulin modulate protein kinase C activity and isozyme expression in rat colonic mucosa. Br J Nutr 84:635–643

    PubMed  CAS  Google Scholar 

  • Pajari AM, Rajakangas J, Päivärinta E et al (2003) Promotion of intestinal tumor formation by inulin is associated with an accumulation of cytosolic beta-catenin in Min mice. Int J Cancer 106:653–660

    Article  PubMed  CAS  Google Scholar 

  • Pajari AM, Smeds AI, Oikarinen S et al (2006) The plant lignans matairesinol and secoisolariciresinol administered to Min mice do not protect against intestinal tumor formation. Cancer Lett 233:309–314

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Hunter DJ, Spiegelman D et al (2005) Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 294:2849–2857

    Article  PubMed  CAS  Google Scholar 

  • Pence BC, Dunn DM, Zhao C et al (1995) Chemopreventive effects of calcium but not aspirin supplementation in cholic acid-promoted colon carcinogenesis: correlation with intermediate endpoints. Carcinogenesis 16:757–765

    Article  PubMed  CAS  Google Scholar 

  • Pongracz J, Clark P, Neoptolemos JP et al (1995) Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int J Cancer 61:35–39

    Article  PubMed  CAS  Google Scholar 

  • Preston SL, Leedham SJ, Oukrif D et al (2008) The development of duodenal microadenomas in FAP patients: the human correlate of the Min mouse. J Pathol 214:294–301

    Article  PubMed  CAS  Google Scholar 

  • Reddy B, Engle A, Katsifis S et al (1989) Biochemical epidemiology of colon cancer: effect of types of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Res 49:4629–4635

    PubMed  CAS  Google Scholar 

  • Reddy BS, Hirose Y, Cohen LA et al (2000) Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Cancer Res 60:4792–4797

    PubMed  CAS  Google Scholar 

  • Reddy BS, Maeura Y, Wayman M (1983) Effect of dietary corn bran and autohydrolyzed lignin on 3,2'-dimethyl-4-aminobiphenyl-induced intestinal carcinogenesis in male F344 rats. J Natl Cancer Inst 71:419–423

    PubMed  CAS  Google Scholar 

  • Reddy BS, Mori H (1981) Effect of dietary wheat bran and dehydrated citrus fiber on 3,2'-dimethyl-4-aminobiphenyl-induced intestinal carcinogenesis in F344 rats. Carcinogenesis 2:21–25

    Article  PubMed  CAS  Google Scholar 

  • Reddy BS, Mori H, Nicolais M (1981) Effect of dietary wheat bran and dehydrated citrus fiber on azoxymethane-induced intestinal carcinogenesis in Fischer 344 rats. J Natl Cancer Inst 66:553–557

    PubMed  CAS  Google Scholar 

  • Reddy BS, Simi B, Patel N et al (1996) Effect of amount and types of dietary fat on intestinal bacterial 7α-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during different stages of colon tumor promotion. Cancer Res 56:2314–2320

    PubMed  CAS  Google Scholar 

  • Reddy BS, Watanabe K, Weisburger JH et al (1977) Promoting effect of bile acids in colon carcinogenesis in germ free and conventional F344 rats. Cancer Res 37:3238–3242

    PubMed  CAS  Google Scholar 

  • Reddy BS, Wynder EL (1973) Large bowel carcinogenesis: fecal constituents of populations with diverse incidence rates of colon cancer. J Natl Cancer Inst 50:1437–1442

    PubMed  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  PubMed  CAS  Google Scholar 

  • Roediger WW (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429

    PubMed  CAS  Google Scholar 

  • Sakata T (1987) Stimulatory effect of short chain fatty acids on epithelial cell proliferation in rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes, and luminal trophic factors. Br J Nutr 58:95–103

    Article  PubMed  CAS  Google Scholar 

  • Sang S, Ju J, Lambert JD (2006) Wheat bran oil and its fractions inhibit human colon cancer cell growth and intestinal tumorigenesis in Apcmin/+ mice. J Agric Food Chem 54:9792–9797

    Article  PubMed  CAS  Google Scholar 

  • Schatzkin A, Lanza E, Corle D et al (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. N Engl J Med 342:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Schatzkin A, Mouw T, Park Y et al (2007) Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr 85:1353–1360

    PubMed  CAS  Google Scholar 

  • Schatzkin A, Park Y, Leitzman MF et al (2008) Prospective study of dietary fiber, whole grain foods, and small intestinal cancer. Gastroenterology 135:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Shimoji Y, Kohno H, Nanda K et al (2004) Extract of Kurosu, a vinegar from unpolished rice, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Nutr Cancer 49:170–173

    Article  PubMed  Google Scholar 

  • Shimoji Y, Sugie S, Kohno H et al (2003) Extract of vinegars Kurosu from unpolished rice inhibits the development of colon aberrant crypt foci induced by azoxymethane. J Exp Clin Cancer Res 22:591–597

    PubMed  CAS  Google Scholar 

  • Siavoshian S, Segain JP, Kornprobst M et al (2000) Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 46:507–514

    Article  PubMed  CAS  Google Scholar 

  • Sinkeldam EJ, Kuper CF, Bosland MC et al (1990) Interactive effects of dietary wheat bran and lard on N-methyl-N'-nitro-N-nitrosoguanidine-induced colon carcinogenesis in rats. Cancer Res 50:1092–1096

    PubMed  CAS  Google Scholar 

  • Slattery ML, Curtin KP, Edwards SL et al (2004) Plant foods, fiber, and rectal cancer. Am J Clin Nutr 79:274–281

    PubMed  CAS  Google Scholar 

  • Slavin J, Martini MC, Jackobs DR Jr et al (1999) Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70:459S–463S

    PubMed  CAS  Google Scholar 

  • Sung MK, Lautens M, Thompson LU (1998) Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer Res 18:1405–1408

    PubMed  CAS  Google Scholar 

  • Takahashi T, Satou M, Watanabe N et al (1999) Inhibitory effect of microfibril wheat bran on azoxymethane-induced colon carcinogenesis in CF1 mice. Cancer Lett 141:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tata JR, Baker BS, Machuca I et al (1993) Autoinduction of nuclear receptor genes and its significance. J Steroid Biochem Mol Biol 46:105–119

    Article  PubMed  CAS  Google Scholar 

  • Trowell H (1976) Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. Am J Clin Nutr 29:417–427

    PubMed  CAS  Google Scholar 

  • Ullah A, Shamsuddin AM (1990) Dose-dependent inhibition of large intestinal cancer by inositol hexaphospate in F344 rats. Carcinogenesis 11:2219–2222

    Article  PubMed  CAS  Google Scholar 

  • van Kranen HJ, Mortensen A, Sørensen IK et al (2003) Lignan precursors from flaxseed or rye bran do not protect against the development of intestinal neoplasia in ApcMin mice. Nutr Cancer 45:203–210

    Article  PubMed  Google Scholar 

  • Verschoyle RD, Greaves P, Cai H et al (2007) Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis. Br J Cancer 96:248–254

    Article  PubMed  CAS  Google Scholar 

  • Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778S–3784S

    PubMed  CAS  Google Scholar 

  • Wargovich MJ, Jimenez A, McKee K et al (2000) Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis 21:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Reddy BS, Weisburger JH et al (1979) Effect of dietary alfalfa, pectin, and wheat bran on azoxymethane-or methylnitrosourea-induced colon carcinogenesis in F344 rats. J Natl Cancer Inst 63:141–145

    PubMed  CAS  Google Scholar 

  • Whitehead RH, Young GP, Bhathal PS (1986) Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27:1457–1463

    Article  PubMed  CAS  Google Scholar 

  • Wilson AJ, Byun DS, Popova N et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  PubMed  CAS  Google Scholar 

  • Wilson RB, Hutcheson DP, Wideman L (1977) Dimethylhydrazine-induced colon tumors in rats fed diets containing beef fat or corn oil with and without wheat bran. Am J Clin Nutr 30:176–181

    PubMed  CAS  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington DC

    Google Scholar 

  • Young GP, McIntry A, Albert V et al (1996) Wheat bran suppresses potato starch -potentiated colorectal tumorigenesis at the aberrant crypt stage in a rat model. Gastroenterology 110:508–514

    Article  PubMed  CAS  Google Scholar 

  • Yu CF, Whitley L, Carryl O et al (2001) Differential dietary effects on colonic and small bowel neoplasia in C57BL/6 J Apc Min/+ mice. Dig Dis Sci 46:1367–1380

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Subbaramaiah K, Altorki N et al (1998) Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J Biol Chem 273:2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Zoran DL, Turner ND, Taddeo SS et al (1997) Wheat bran diet reduces tumor incidence in a rat model of colon cancer independent of effects on distal luminal butyrate concentrations. J Nutr 127:2217–2225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Maria Pajari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pajari, AM. (2011). Whole Grains and Their Constituents in the Prevention of Colon Cancer. In: Mutanen, M., Pajari, AM. (eds) Vegetables, Whole Grains, and Their Derivatives in Cancer Prevention. Diet and Cancer, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9800-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9800-9_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9799-6

  • Online ISBN: 978-90-481-9800-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics