Skip to main content

Shocks in the Heliosphere

  • Chapter
  • First Online:
The Sun, the Solar Wind, and the Heliosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 4))

Abstract

Most of astrophysical shocks are collisionless, where the collective electromagnetic interaction plays the essential role in the dissipation process and results in a large deviation of particle phase-space distribution from the thermal equilibrium. An ideal laboratory for collisionless shocks is the heliosphere, in which shocks are formed ahead of coronal mass ejections (CME), ahead of planetary/cometary magnetospheres/ionospheres, around corotating interaction regions (CIR), and ahead of the heliopause. This review gives three topics about the nonthermal particle acceleration at these heliospheric shocks, nonlinear reaction of shock acceleration, the maximum energy of shock-accelerated particles, and the problem of shock acceleration of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the heliospheric shocks, the role of “cosmic rays” in CRMS is played by various components of energetic particles (interstellar pickup protons at TS, diffuse ions at BS, and SEPs at CME shocks).

References

  • Axford IA, Leer E, Skadron G (1977) The acceleration of cosmic rays by shock waves. Proc 15th Int Conf Cosmic Rays 11:132–137

    Google Scholar 

  • Barnes CW, Simpson JA (1976) Evidence for interplanetary acceleration of nucleons in corotating interaction regions. Astrophys J 210:L91–L96

    Article  Google Scholar 

  • Bartol Research Institute Neutron monitor data (2005) Data list. From ftp://ftp.bartol.udel.edu/pyle/BRIData/BRI2005.txt

  • Bell AR (1978) The acceleration of cosmic rays in shock fronts, 1. Mon Not R Astron Soc 182:147–156

    Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. Astrophys J 221:L29–L32

    Article  Google Scholar 

  • Bonifazi C, Moreno G, Russell CT et al (1983) Solar wind deceleration and MHD turbulence in the earth’s foreshock region: ISEE 1 and 2 and IMP 8 observations. J Geophys Res 88:2029–2037

    Article  Google Scholar 

  • Dermer CD, Razzaque S, Finke JD et al (2009) Ultra-high-energy cosmic rays from black hole jets of radio galaxies. New J Phys 11:065016

    Article  Google Scholar 

  • Desai MI, Burgess D (2008) Particle acceleration at coronal mass ejection-driven interplanetary shocks and the earth’s bow shock. J Geophys Res 113:A00B06

    Article  Google Scholar 

  • Drake JF, Opher M, Swisdak M et al (2010) A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys J 709:963–974

    Article  Google Scholar 

  • Drury LOC (1983) An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep Prog Phys 46:973–1027

    Article  Google Scholar 

  • Drury LOC, Völd HJ (1981) Hydromagnetic shock structure in the presence of cosmic rays. Astrophys J 248:344–351

    Article  Google Scholar 

  • Eastwood JP, Lucek EA, Mazelle C et al (2005) The foreshock. Space Sci Rev 118:41–94

    Article  Google Scholar 

  • Fisk LA, Gloeckler G (2009) The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv Space Res 43:1471–1478

    Article  Google Scholar 

  • Florinski V, Balogh A, Jokipii JR et al (2009a) The dynamic heliosphere: outstanding issues. Space Sci Rev 143: 57–83

    Article  Google Scholar 

  • Florinski V, Decker RB, le Roux JA et al (2009b) An energetic-particle-mediated termination shock observed by Voyager 2. Geophys Res Lett 36:L12101

    Article  Google Scholar 

  • Geophysical Monograph 34 (1985) In: Stone RG, Tsurutani BT (eds) Collisionless shocks in the heliosphere: a tutorial review. American Geophysical Union, Washington, DC

    Google Scholar 

  • Geophysical Monograph 35 (1985) In: Tsurutani BT, Stone RG (eds) Collisionless shocks in the heliosphere: Review of current research. American Geophysical Union, Washington, DC

    Google Scholar 

  • GOES space environment monitor (2005) Data plot. From http:// goes.ngdc.noaa.gov/data/plots/2005/GOES-200501.pdf

  • Gómez-Herrero R, Klassen A, Müler-Mellin R et al (2009) Recurrent CIR accelerated ions observed by STEREO SEPT. J Geophys Res 114:A05101

    Article  Google Scholar 

  • Hillas AM (1984) The origin of ultra-high-energy cosmic rays. Annu Rev Astron Astrophys 22:425–444

    Article  Google Scholar 

  • Inoue S, Aharonian FA, Sugiyama N (2005) Hard X-ray and gamma-ray emission induced by ultra-high-energy protons in cluster accretion shocks. Astrophys J 628:L9–L12

    Article  Google Scholar 

  • Jones FC, Ellison DC (1991) The plasma physics of shock acceleration. Space Sci Rev 58:259–346

    Article  Google Scholar 

  • Kis A, Scholer M, Klecker B et al (2004) Multi-spacecraft observations of diffuse ions upstream of earth’s bow shock. Geophys Res Lett 31:L20801

    Article  Google Scholar 

  • Kis A, Scholer M, Klecker B et al (2007) Scattering of field-aligned beam ions upstream of earth’s bow shock. Ann Geophys 25:785–799

    Article  Google Scholar 

  • Klecker B, Kunow H, Canve HV et al (2006) Energetic particle observations, Report of working group C. Space Sci Rev 123:217–250

    Article  Google Scholar 

  • Kronberg EA, Kis A, Klecker B et al (2009) Multipoint observations of ions in the 30–160 keV energy range upstream of the earth’s bow shock. J Geophys Res 114:A03211

    Article  Google Scholar 

  • Krymsky GF (1977) A regular mechanism for accelerating charged particles at the shock front. Dokl Akad Nauk SSSR 234:1306–1308 (Soviet Phys Dokl 22:327–328)

    Google Scholar 

  • Lario D, Ho GC, Decker RB et al (2003) ACE observations of energetic particles associated with transient interplanetary shocks. In: Velli M, Bruno R, Malara F (eds) Solar wind ten, AIP, Melville, NY, pp 640–643

    Google Scholar 

  • Lazarian A, Opher M (2009) A model of acceleration of anomalous cosmic rays by reconnection in the heliosheath. Astrophys J 703:8–21

    Article  Google Scholar 

  • Lee MA (2005) Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys J Suppl Ser 158:38–67

    Article  Google Scholar 

  • Lin RP, Mitchell DL, Curtis DW et al (2007) Lunar surface magnetic fields and their interaction with the solar wind: Results from Lunar Prospector. Science 281:1480–1484

    Article  Google Scholar 

  • Lucek EA, Horbury TS, Dandouras I et al (2008) Cluster observations of the earth’s quasi-parallel bow shock. J Geophys Res 113:A07S02

    Article  Google Scholar 

  • Malkov MA, Drury LOC (2001) Nonlinear theory of diffusive acceleration of particles by shock waves. Rep Prog Phys 64:429–481

    Article  Google Scholar 

  • Masson S, Klein KL, Bütikofer R et al (2009) Acceleration of relativistic protons during the 20 January 2005 flare and CME. Solar Phys 257:305–322

    Article  Google Scholar 

  • McCracken KG, Moraal H, Stoker PH (2008) Investigation of the multiplecomponent structure of the 20 January 2005 cosmic ray ground level enhancement. J Geophys Res 113: A12101

    Article  Google Scholar 

  • Meszaros P (2002) Theories of gamma-ray bursts. Annu Rev Astron Astrophys 40:137–169

    Article  Google Scholar 

  • Nagano M, Watson AA (2000) Observations and implications of the ultrahighenergy cosmic rays. Rev Mod Phys 72:689–732

    Article  Google Scholar 

  • Ng CK, Reams DV (2008) Shock acceleration of solar energetic protons: The first 10 minutes. Astrophys J 686:L123–L126

    Article  Google Scholar 

  • Norman CA, Melrose DB, Achterberg A (1995) The origin of cosmic rays above 1018.5 eV. Astrophys J 454:60–68

    Article  Google Scholar 

  • Paschmann G, Sckopke N, Papamastorakis I et al (1981) Characteristics of reflected and diffuse ions upstream from the earth’s bow shock. J Geophys Res 86:4355–4364

    Article  Google Scholar 

  • Rachen JP, Biermann PL (1993) Extragalactic ultra-high energy cosmic rays I. Contribution from hot spots in FR-II radio galaxies. Astron Astrophys 272:161–175

    Google Scholar 

  • Reams DV, Ng CK (1998) Streaming-limited intensities of solar energetic particles. Astrophys J 504:1002–1005

    Article  Google Scholar 

  • Reams DV (1999) Particle acceleration at the sun and in the heliosphere. Space Sci Rev 90:413–491

    Article  Google Scholar 

  • Schlickeiser R (2002) Cosmic ray astrophysics. Springer, Berlin

    Google Scholar 

  • Schwartz SJ (2006) Shocks: commonalities in solar-terrestrial chains. Space Sci Rev 124:333–344

    Article  Google Scholar 

  • Shimada N, Terasawa T, Hoshino M et al (1999) Diffusive shock acceleration of electrons at an interplanetary shock observed on 21 Feb 1994. Astrophys Space Sci 264:481–488

    Article  Google Scholar 

  • Smart DF, Shea MA (1985) A simplified model for timing the arrival of solar-flare initiated shocks. J Geophys Res 90:183–190

    Article  Google Scholar 

  • Terasawa T (2005) GEOTAIL observation of solar wind and interplanetary phenomena. In: Hoshino M, Omura Y, Lanzerotti LJ (eds) Frontiers in magnetospheric plasma physics, COSPAR Colloquium Series 16:267–280

    Google Scholar 

  • Terasawa T, Oka M, Nakata K et al (2006) ‘Cosmic-ray-mediated’ interplanetary shocks in 1994 and 2003. Adv Space Res 37:1408–1412

    Article  Google Scholar 

  • Toptyghin IN (1980) Acceleration of particles by shocks in a cosmic plasma. Space Sci Rev 26:157–213

    Article  Google Scholar 

  • Trattner KJ, Möbius E, Scholer M et al (1994) Statistical analysis of diffuse ion events upstream of the earth’s bow shock. J Geophys Res 99:13389–13400

    Article  Google Scholar 

  • Treumann RA, Terasawa T (2001) Electron acceleration in the heliosphere. Space Sci Rev 99:135–150

    Article  Google Scholar 

  • Treumann RA, Jaroschek H (2008) Planetary bow shocks. arXiv:0808.1701v1 [astro-ph.EP]

    Google Scholar 

  • Uchiyama Y, Aharonian FA, Tanaka T et al (2007) Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449:576–578

    Article  Google Scholar 

  • Vainio R, Laitinen T (2007) Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence. Astrophys J 658:622–630

    Article  Google Scholar 

  • Vietri M (1995) The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts. Astrophys J 453:883–889

    Article  Google Scholar 

  • Voit GM (2005) Tracing cosmic evolution with clusters of galaxies. Rev Mod Phys 77:207–258

    Article  Google Scholar 

  • Webb GM, Axford WI, Terasawa T (1983) On the drift mechanism for energetic charged particles at shocks. Astrophys J 270:537–553

    Article  Google Scholar 

  • Zank GP, Rice WKM, Wu CC (2000) Particle acceleration and coronalmass ejection driven shocks: A theoretical model. J Geophys Res 105:25079–25095

    Article  Google Scholar 

  • Zhang TL, Schwingenschuh K, Russell CT (1995) A study of the solar wind deceleration in the earth’s foreshock region. Adv Space Res 15:137–140

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. R. Kataoka, K. Asano, K. Shibata, N. Nitta, R. Nakamura, W. Baumjohann, B. Klecker, and M. Scholer for valuable comments and discussions. This work is supported in part by the Grant-in-aid 21540259 for Scientific Research from the MEXT, Japan. Neutron monitors of the Bartol Research Institute are supported by NSF grant ATM-0527878.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Terasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Terasawa, T. (2011). Shocks in the Heliosphere. In: Miralles, M., Sánchez Almeida, J. (eds) The Sun, the Solar Wind, and the Heliosphere. IAGA Special Sopron Book Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9787-3_12

Download citation

Publish with us

Policies and ethics